题目内容

在△ABC中,a,b,c分别是角A、B、C的对边,若a=1,且2cosC+c=2b,则△ABC的周长的取值范围是(  )
A、(1,3]
B、[2,4]
C、(2,3]
D、[3,5]
考点:余弦定理
专题:三角函数的求值
分析:由余弦定理求得 cosC,代入已知等式可得(b+c)2-1=3bc,利用基本不等式求得 b+c≤2,故a+b+c≤3.再由三角形任意两边之和大于第三边求得a+b+c>2,由此求得△ABC的周长的取值范围.
解答: 解:△ABC中,由余弦定理可得:2cosC=
a2+b2-c2
2ab

∵a=1,2cosC+c=2b,
1+b2-c2
b
+c=2b,化简可得:(b+c)2-1=3bc,
∵bc≤(
b+c
2
2
∴(b+c)2-1≤3×(
b+c
2
2
解得:b+c≤2(当且仅当b=c时,取等号).
∴a+b+c≤3,
再由任意两边之和大于第三边可得:b+c>a=1,
故有a+b+c>2,
则△ABC的周长的取值范围是(2,3],
故选:C.
点评:此题考查了余弦定理,以及基本不等式的运用,熟练掌握余弦定理是解本题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网