题目内容
9.已知一几何体的三视图如图所示,则该几何体的体积为( )| A. | $\frac{π}{6}+\frac{1}{3}$ | B. | $\frac{π}{12}+1$ | C. | $\frac{π}{12}+\frac{1}{3}$ | D. | $\frac{π}{4}+\frac{1}{3}$ |
分析 由三视图可知:该几何体由一个三棱锥与一个圆锥的$\frac{1}{4}$组成.
解答 解:由三视图可知:该几何体由一个三棱锥与一个圆锥的$\frac{1}{4}$组成.![]()
∴该几何体的体积V=$\frac{1}{4}×\frac{1}{3}×π×{1}^{2}×1$+$\frac{1}{3}×\frac{1}{2}×2×1×1$=$\frac{π}{12}$+$\frac{1}{3}$.
故选:C.
点评 本题考查了四棱锥的三视图、体积计算公式,考查了推理能力与计算能力,属于中档题.
练习册系列答案
相关题目
19.设双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的左、右焦点分别为F1,F2,以F1为圆心,|F1F2|为半径的圆与双曲线在第一、二象限内依次交于A,B两点,若|F1B|=3|F2A|,则该双曲线的离心率为( )
| A. | $\frac{5}{4}$ | B. | $\frac{4}{3}$ | C. | $\frac{3}{2}$ | D. | 2 |
4.已知$cos(3π-α)=\frac{4}{5}$,则cos(π+α)的值是( )
| A. | $\frac{4}{5}$ | B. | -$\frac{4}{5}$ | C. | $\frac{3}{5}$ | D. | -$\frac{3}{5}$ |