题目内容

1.设椭圆$\frac{{x}^{2}}{10}$+y2=1和双曲线$\frac{{x}^{2}}{8}$-y2=1的公共焦点分别为F1,F2,P是这两曲线的交点,则△PF1F2的外接圆半径为(  )
A.1B.2C.2$\sqrt{2}$D.3

分析 利用椭圆、双曲线的定义,结合余弦定理,证明PF1⊥PF2,即可求出△PF1F2的外接圆半径.

解答 解:由题意,设P为第一象限的交点,
|PF1|+|PF2|=2$\sqrt{10}$,|PF1|-|PF2|=2$\sqrt{8}$,
∴|PF1|=$\sqrt{10}$+2$\sqrt{2}$,|PF2|=$\sqrt{10}$-2$\sqrt{2}$,
∵|F1F2|=6,
∴cos∠F1PF2=$\frac{20+16-36}{2(10-8)}$=0,
∴PF1⊥PF2,∴F1F2是△PF1F2的外接圆的直径,
则△PF1F2的外接圆半径为3.
故选:D

点评 本题考查椭圆、双曲线的定义,考查余弦定理,利用双曲线和椭圆的定义是解决本题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网