题目内容
12.在高台跳水运动中,某运动员相对于水面的高度h(单位:m)与起跳后的时间t(单位:s)存在函数关系h(t)=-4.9t2+6.5t+10.则该运动员在t=0.5s时的瞬时速度为v=1.6m/s.分析 根据题意,由h(t)的解析式对其求导可得h′(t)=-9.8t+6.5,由导数的定义分析可得该运动员在t=0.5s时的瞬时速度即h′(0.5)的值,计算h′(0.5)的值即可得答案.
解答 解:根据题意,h(t)=-4.9t2+6.5t+10,
其导数为h′(t)=-9.8t+6.5,
则h′(0.5)=-9.8×0.5+6.5=1.6,
该运动员在t=0.5s时的瞬时速度即h′(0.5)的值,即该运动员在t=0.5s时的瞬时速度为1.6m/s,
故答案为:1.6
点评 本题考查导数的定义以及计算,关键是掌握导数的定义.
练习册系列答案
相关题目
17.已知随机变量ξ的取值为不大于n的非负整数值,它的分布列为:
其中pi(i=0,1,2,…,n)满足:pi∈[0,1],且p0+p1+p2+…+pn=1.
定义由ξ生成的函数f(x)=p0+p1x+p2x2+…+pnxn,令g(x)=f′(x).
(I)若由ξ生成的函数f(x)=$\frac{1}{4}$x+$\frac{1}{2}$x2+$\frac{1}{4}$x3,求P(ξ=2)的值;
(II)求证:随机变量ξ的数学期望E(ξ)=g(1),ξ的方差D(ξ)=g′(1)+g(1)-(g(1))2;(D(ξ)=$\sum_{i=0}^{n}$(i-E(ξ))2•pi)
(Ⅲ)现投掷一枚骰子两次,随机变量ξ表示两次掷出的点数之和,此时由ξ生成的函数记为h(x),求h(2)的值.
| ξ | 0 | 1 | 2 | … | n |
| P | p0 | p1 | p2 | … | pn |
定义由ξ生成的函数f(x)=p0+p1x+p2x2+…+pnxn,令g(x)=f′(x).
(I)若由ξ生成的函数f(x)=$\frac{1}{4}$x+$\frac{1}{2}$x2+$\frac{1}{4}$x3,求P(ξ=2)的值;
(II)求证:随机变量ξ的数学期望E(ξ)=g(1),ξ的方差D(ξ)=g′(1)+g(1)-(g(1))2;(D(ξ)=$\sum_{i=0}^{n}$(i-E(ξ))2•pi)
(Ⅲ)现投掷一枚骰子两次,随机变量ξ表示两次掷出的点数之和,此时由ξ生成的函数记为h(x),求h(2)的值.
1.等比数列{an}中,a2=1,a4=2,则a6=( )
| A. | $2\sqrt{2}$ | B. | 4 | C. | $4\sqrt{2}$ | D. | 8 |
13.某医疗科研项目对5只实验小白鼠体内的A、B两项指标数据进行收集和分析,得到的数据如下表:
(1)若通过数据分析,得知A项指标数据与B项指标数据具有线性相关关系,试根据上表,求B项指标数据y关于A项指标数据x的线性回归方程$\widehat{y}$=$\widehat{b}$x+$\widehat{a}$;
(2)现要从这5只小白鼠中随机抽取3只,求其中至少有一只B项指标数据高于3的概率.
参考公式:$\widehat{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{x}_{i}^{2}-n{\overline{x}}^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{x}$.
| 指标 | 1号小白鼠 | 2号小白鼠 | 3号小白鼠 | 4号小白鼠 | 5号小白鼠 |
| A | 5 | 7 | 6 | 9 | 8 |
| B | 2 | 2 | 3 | 4 | 4 |
(2)现要从这5只小白鼠中随机抽取3只,求其中至少有一只B项指标数据高于3的概率.
参考公式:$\widehat{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{x}_{i}^{2}-n{\overline{x}}^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{x}$.