题目内容
已知a,b,c是正常数,且a,b,c互不相等,x,y,z∈(0,+∞),求证:
+
+
≥
,并指出等号成立的条件.
| a2 |
| x2 |
| b2 |
| y2 |
| c2 |
| z2 |
| (a+b+c)2 |
| x+y+z |
考点:不等式的证明
专题:证明题,不等式的解法及应用
分析:令
=(x,y,z),
=(
,
,
),由|
|2•|
|2≥|
•
|2,即可得证,再由向量共线的知识,即可得到取等号的条件.
| m |
| n |
| a |
| x |
| b |
| y |
| c |
| z |
| m |
| n |
| n |
| m |
解答:
证明:令
=(x,y,z),
=(
,
,
),
则
•
=x•
+y•
+z•
=a+b+c,
|
|2=x2+y2+z2,|
|2=
+
+
,
由|
|2•|
|2≥|
•
|2,
则有(x2+y2+z2)(
+
+
)≥(a+b+c)2,
即有
+
+
≥
.
当且仅当a:b:c=x2:y2:z2,不等式取等号.
| m |
| n |
| a |
| x |
| b |
| y |
| c |
| z |
则
| m |
| n |
| a |
| x |
| b |
| y |
| c |
| z |
|
| m |
| n |
| a2 |
| x2 |
| b2 |
| y2 |
| c2 |
| z2 |
由|
| m |
| n |
| n |
| m |
则有(x2+y2+z2)(
| a2 |
| x2 |
| b2 |
| y2 |
| c2 |
| z2 |
即有
| a2 |
| x2 |
| b2 |
| y2 |
| c2 |
| z2 |
| (a+b+c)2 |
| x2+y2+z2 |
当且仅当a:b:c=x2:y2:z2,不等式取等号.
点评:本题考查不等式的证明,考查运用向量法证明不等式,考查运算能力,属于中档题.
练习册系列答案
相关题目
若抛物线y2=2px的焦点与椭圆
+
=1的右焦点重合,则p的值为( )
| x2 |
| 6 |
| y2 |
| 2 |
| A、-2 | B、2 | C、-4 | D、4 |