题目内容
若函数f(x)=sinxcosx,下列结论中正确的是( )
| A、函数f(x)的图象关于原点对称 |
| B、函数f(x)最小正周期为2π |
| C、函数f(x)为偶函数 |
| D、函数f(x)的最大值为1 |
考点:二倍角的正弦
专题:三角函数的图像与性质
分析:由已知中函数f(x)=sinxcosx=
sin2x,根据正弦函数的图象和性质可得该函数为奇函数,最小正周期T=π,最大值=
,逐一分析四个答案,可得结论.
| 1 |
| 2 |
| 1 |
| 2 |
解答:
解:∵f(x)=sinxcosx=
sin2x,
∴该函数为奇函数,最小正周期T=π,最大值=
.
故C,B,D错误,A正确
故选:A
| 1 |
| 2 |
∴该函数为奇函数,最小正周期T=π,最大值=
| 1 |
| 2 |
故C,B,D错误,A正确
故选:A
点评:本题考查的知识点是正弦函数的对称性,二倍角的正弦,三角函数的周期性及其求法,正弦函数的奇偶性,其中熟练掌握正弦型函数的图象和性质是解答本题的关键.
练习册系列答案
相关题目
复数
=( )
| -i |
| 1-i |
A、-
| ||||
B、-
| ||||
C、
| ||||
D、
|
已知集合M={y|y=x2-1,x∈R},集合N={x|y=
,x∈R},则(∁RM)∩N( )
| 2-x2 |
A、-
| ||
B、[-
| ||
C、[-
| ||
D、[-
|
已知复数z=
,i是虚数单位,则复数虚部是( )
| 1+2i |
| 3-i |
A、
| ||
B、
| ||
C、
| ||
D、
|
集合A={x∈N|3<x<9},B={3,5,7,8},则A∪B中的元素的个数有( )
| A、0 | B、2 | C、4 | D、6 |