题目内容

若f(x)是(-a,a)上的可导奇函数,且f'(x)不恒为零,则f'(x)在(-a,a)上(  )
A、必为奇函数
B、必为偶函数
C、是非奇非偶函数
D、可能为奇函数,也可能是偶函数
考点:函数的单调性与导数的关系
专题:导数的概念及应用
分析:证明f′(x)是(-a,a)内的偶函数即证f′(-x)=f′(x),而函数f(x)没有解析式,故想到运用导数的定义进行证明.
解答: 证明:对任意 x∈(-1,1),f′(-x)=
lim
△x→0
f(-x+△x)-f(-x)
△x
=
lim
△x→0
f(-(x-△x)-f(-x)
△x

由于f(x)为奇函数,∴f[-(x-△x)]=-f(x-△x),f(-x)=-f(x),
于是 f′(-x)=f′(-x)=
lim
△x→0
-f(x-△x)+f(x)
△x
=
lim
△x→0
f(x-△x)-f(x)
△x
=f′(x)
因此f′(-x)=f′(x)即f′(x)是(-1,1)内的偶函数.
故选:B.
点评:本题考查导数的定义以及函数奇偶性的判断,关键是正确利用导数的定义,函数奇偶性的判断方法.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网