题目内容

9.在等差数列{an}中,
(1)已知a6=10,S5=5,求a8和S8
(2)已知前3项和为12,前3项积为48,且d>0,求a1
(3)已知前3项依次为a,4,3a,前k项和Sk=2550,求a及k.

分析 (1)由已知利用等差数列通项公式和前n项和公式列出方程组,求出首项和公差,由此能求出a8和S8
(2)由等差数列项公式列出方程组,根据d>0,能求出首项a1
(3)由等差数列性质及前n项和公式列出方程组,由此能求出a及k.

解答 解:(1)∵等差数列{an}中,a6=10,S5=5,
∴$\left\{\begin{array}{l}{{a}_{1}+5d=10}\\{5{a}_{1}+\frac{5×4}{2}d=5}\end{array}\right.$,
解得a1=-5,d=3,
∴a8=-5+7×3=16.
S8=8×(-5)+$\frac{8×7}{2}×3$=44.
(2)∵等差数列{an}中,前3项和为12,前3项积为48,且d>0,
∴$\left\{\begin{array}{l}{{a}_{1}+{a}_{1}+d+{a}_{1}+2d=12}\\{{a}_{1}({a}_{1}+d)({a}_{1}+2d)=48}\end{array}\right.$,
又d>0,
解得a1=2,d=2.
∴a1=2.
(3)∵在等差数列{an}中,前3项依次为a,4,3a,前k项和Sk=2550,
∴$\left\{\begin{array}{l}{\frac{a+3a}{2}=4}\\{ka+\frac{k(k-1)}{2}(4-a)=2550}\end{array}\right.$,
解得a=2,k=50或a=2,k=-51(舍),
∴a=2,k=50.

点评 本题考查等差数列的性质的利用,是基础题,解题时要认真审题,注意等差数列的性质的合理运用.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网