题目内容

4.设$\overrightarrow{a}$=(x1,y1),$\overrightarrow{b}$=(x2,y2),向量$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为θ,则
(1)$\overrightarrow{a}$•$\overrightarrow{b}$=x1x2+y1y2
(2)|$\overrightarrow{a}$|=$\sqrt{\overrightarrow{a}•\overrightarrow{a}}$=$\sqrt{{{x}_{1}}^{2}+{{y}_{1}}^{2}}$;
(3)$\overrightarrow{a}$⊥$\overrightarrow{b}$?$\overrightarrow{a}$•$\overrightarrow{b}$=0?x1x2+y1y2=0;
(4)cosθ=$\frac{\overrightarrow{a}•\overrightarrow{b}}{|\overrightarrow{a}||\overrightarrow{b}|}$=$\frac{{x}_{1}{x}_{2}+{y}_{1}{y}_{2}}{\sqrt{{{x}_{1}}^{2}+{{y}_{1}}^{2}}\sqrt{{{x}_{2}}^{2}+{{y}_{2}}^{2}}}$.

分析 根据平面向量的运算性质计算.

解答 解:(1))$\overrightarrow{a}$•$\overrightarrow{b}$=x1x2+y1y2
(2)|$\overrightarrow{a}$|=$\sqrt{\overrightarrow{a}•\overrightarrow{a}}$=$\sqrt{{{x}_{1}}^{2}+{{y}_{1}}^{2}}$;
(3)$\overrightarrow{a}$⊥$\overrightarrow{b}$?$\overrightarrow{a}•\overrightarrow{b}=0$?x1x2+y1y2=0;
(4)cosθ=$\frac{\overrightarrow{a}•\overrightarrow{b}}{|\overrightarrow{a}||\overrightarrow{b}|}$=$\frac{{x}_{1}{x}_{2}+{y}_{1}{y}_{2}}{\sqrt{{{x}_{1}}^{2}+{{y}_{1}}^{2}}\sqrt{{{x}_{2}}^{2}+{{y}_{2}}^{2}}}$.
故答案为:(1)x1x2+y1y2;(2)$\sqrt{{{x}_{1}}^{2}+{{y}_{1}}^{2}}$;(3)$\overrightarrow{a}•\overrightarrow{b}=0$,x1x2+y1y2=0;(4)$\frac{{x}_{1}{x}_{2}+{y}_{1}{y}_{2}}{\sqrt{{{x}_{1}}^{2}+{{y}_{1}}^{2}}\sqrt{{{x}_{2}}^{2}+{{y}_{2}}^{2}}}$.

点评 本题考查了平面向量的数量积运算的性质,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网