题目内容
已知数列{an}的前n项和为Sn,且Sn=2n2+n,n∈N*,数列{bn}满足an=4log2bn-1,n∈N*.
(1)求an,bn;
(2)数列cn=an+bn,求数列{cn}的前n项和Tn.
(1)求an,bn;
(2)数列cn=an+bn,求数列{cn}的前n项和Tn.
考点:数列的求和
专题:等差数列与等比数列
分析:(1)利用an=
,能求出an=4n-1.由此推导出log2bn=n,从而求出bn=2n.
(2)由cn=an+bn=(4n-1)+2n,利用分组求和法能求出数列{cn}的前n项和Tn.
|
(2)由cn=an+bn=(4n-1)+2n,利用分组求和法能求出数列{cn}的前n项和Tn.
解答:
解:(1)∵数列{an}的前n项和为Sn,且Sn=2n2+n,n∈N*,
∴n=1时,a1=S1=2+1=3,
n≥2时,an=Sn-Sn-1=(2n2+n)-[2(n-1)2+(n-1)]=4n-1,
n=1时,4n-1=3=a1,
∴an=4n-1.
∵数列{bn}满足an=4log2bn-1,n∈N*.
∴log2bn=n,∴bn=2n.
(2)∵cn=an+bn=(4n-1)+2n,
∴Tn=[4(1+2+3+…+n)-n]+(2+22+23+…+2n)
=[4•
-n]+
=2n(n+1)-n+2n+1-2
=2n2+n+2n+1-2.
∴n=1时,a1=S1=2+1=3,
n≥2时,an=Sn-Sn-1=(2n2+n)-[2(n-1)2+(n-1)]=4n-1,
n=1时,4n-1=3=a1,
∴an=4n-1.
∵数列{bn}满足an=4log2bn-1,n∈N*.
∴log2bn=n,∴bn=2n.
(2)∵cn=an+bn=(4n-1)+2n,
∴Tn=[4(1+2+3+…+n)-n]+(2+22+23+…+2n)
=[4•
| n(n+1) |
| 2 |
| 2(1-2n) |
| 1-2 |
=2n(n+1)-n+2n+1-2
=2n2+n+2n+1-2.
点评:本题考查数列的通项公式和前n项和公式的求法,是中档题,解题时要认真审题,注意分组求和法的合理运用.
练习册系列答案
相关题目
在等比数列{an}中,a5=3,则a1•a2•a3…a9=39,若数列{bn}为等差数列,b5=3,则数列{bn}的类似结论为( )
| A、b1b2…b9=39 |
| B、b1+b2+…+b9=39 |
| C、b1b2…b9=3×9 |
| D、b1+b2+…+b9=3×9 |