题目内容
17.若X~N(μ,σ2),则P(μ-σ<X≤μ+σ)=0.6826,P(μ-2σ<X≤μ+2σ)=0.9544,已知X~N(0,52),则P(5<X≤10)=( )| A. | 0.4077 | B. | 0.2718 | C. | 0.1359 | D. | 0.0453 |
分析 利用正态分布的对称性即可得出结论.
解答 解:∵X~N(0,52),
∴P(-5<X≤5)=0.6826,P(-10<X≤10)=0.9544,
∴P(5<X≤10)=$\frac{1}{2}$(0.9544-0.6826)=0.1359.
故选C.
点评 本题考查了正态分布的特点,属于基础题.
练习册系列答案
相关题目
12.在区间[-1,m]上随机选取一个数x,若x≤1的概率为$\frac{2}{5}$,则实数m的值为( )
| A. | $\frac{3}{2}$ | B. | 2 | C. | 4 | D. | 5 |
9.近年来,食品安全越来越被广大民众所关注,有机蔬菜因其无污染、富营养和高质量等品质而受到大众喜爱.为了解某地区某种有机蔬菜的年产量x(单位:吨)对价格y(单位:千元/吨)和年利润z的影响,对近五年该有机蔬菜的年产量和价格统计如表:
(1)求y关于x的线性回归方程$\stackrel{∧}{y}$=$\stackrel{∧}{b}$x+$\stackrel{∧}{a}$
(2)假设该有机蔬菜的成本为每吨2千元,并且可以全部卖出,预测年产量为多少吨时,年利润z取到最大值?(结果保留两位小数)
参考公式:$\stackrel{∧}{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}{b}$$\overline{x}$.
| x | 3 | 1 | 2 | 4 | 5 |
| y | 5.5 | 6.5 | 6 | 3.7 | 2.3 |
(2)假设该有机蔬菜的成本为每吨2千元,并且可以全部卖出,预测年产量为多少吨时,年利润z取到最大值?(结果保留两位小数)
参考公式:$\stackrel{∧}{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}{b}$$\overline{x}$.
6.设复数 Z1,Z2 在复平面内对应的点关于虚轴对称,Z1=2+i,则 Z2=( )
| A. | 2-i | B. | -2-i | C. | -2+i | D. | 1+2i |