题目内容

2.在△ABC中,∠A=90°,AB=2,AC=4,E,F分别为AB,BC的中点,则$\overrightarrow{CE}•\overrightarrow{AF}$=-6.

分析 根据题意画出图形,结合图形,利用平面向量的线性表示与数量积运算性质,即可求出$\overrightarrow{CE}•\overrightarrow{AF}$的值.

解答 解:如图所示,
△ABC中,∠A=90°,AB=2,AC=4,E,F分别为AB,BC的中点,
则$\overrightarrow{CE}•\overrightarrow{AF}$=($\overrightarrow{CA}$+$\overrightarrow{AE}$)•$\frac{1}{2}$($\overrightarrow{AC}$+$\overrightarrow{AB}$)
=(-$\overrightarrow{AC}$+$\frac{1}{2}$$\overrightarrow{AB}$)•$\frac{1}{2}$($\overrightarrow{AC}$+$\overrightarrow{AB}$)
=-$\frac{1}{2}$${\overrightarrow{AC}}^{2}$-$\frac{1}{4}$$\overrightarrow{AC}$•$\overrightarrow{AB}$+$\frac{1}{4}$${\overrightarrow{AB}}^{2}$
=-$\frac{1}{2}$×42-$\frac{1}{4}$×0+$\frac{1}{4}$×22
=-6.
故答案为:-6.

点评 本题考查平面向量的线性表示与数量积运算问题,是基础题目.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网