题目内容
已知集合M={x|x≥0},P={0,1,2},则有( )
| A、M?P | B、M⊆P |
| C、M∩P=M | D、M∩P=∅ |
考点:集合的包含关系判断及应用
专题:集合
分析:根据集合的包含系即可得结论
解答:
解:∵集合M={x|x≥0},P={0,1,2},
∴M?P,
故选:A
∴M?P,
故选:A
点评:本题考查集合的包含关系的求法,是基础题,解题时要认真审题,注意不等式性质的合理运用.
练习册系列答案
相关题目
已知函数f(x)=|ax-1|与g(x)=(a-1)x的图象没有交点,那么实数a的取值范围是( )
| A、(-∞,0] | ||
B、(0,
| ||
C、[
| ||
| D、[1,+∞) |
设命题p:?平面向量
和
,|
-
|<|
|+|
|,则?p为( )
| a |
| b |
| a |
| b |
| a |
| b |
A、?平面向量
| ||||||||||||
B、?平面向量
| ||||||||||||
C、?平面向量
| ||||||||||||
D、?平面向量
|
已知平面区域Ω={(x,y)|
,直线y=mx+2m和曲线y=
有两个不同的交点,它们围成的平面区域为M,向区域Ω上随机投一点A,点A落在区域M内的概率为P(M),若0≤m≤1,则P(M)的取值范围为( )
|
| 4-x2 |
A、(0,
| ||
B、(0,
| ||
C、[
| ||
D、[
|