题目内容

点A(-3,3)发出的光线l射到x轴上被x轴反射,反射光线与圆C:x2+y2-4x-4y+7=0相切,则光线l所在直线方程为
 
考点:与直线关于点、直线对称的直线方程
专题:计算题,直线与圆
分析:化简圆的方程为标准方程,求出关于x轴对称的圆的方程,设l的斜率为k,利用相切求出k的值即可得到l的方程.
解答: 解:已知圆的标准方程是(x-2)2+(y-2)2=1,
它关于x轴的对称圆的方程是(x-2)2+(y+2)2=1,
设光线L所在直线的方程是y-3=k(x+3)(其中斜率k待定)
由题设知对称圆的圆心C'(2,-2)到这条直线的距离等于1,
即d=
|5k+5|
1+k2

整理得:12k2+25k+12=0,
解得:k=-
3
4
,或k=-
4
3

故所求的直线方程是y-3=-
3
4
(x+3),或y-3=-
4
3
(x+3),
即3x+4y-3=0,或4x+3y+3=0.
故答案为:3x+4y-3=0,或4x+3y+3=0.
点评:本题考查点、直线和圆的对称问题,直线与圆的关系,是基础题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网