题目内容
10.直线3x+4y-4=0与圆x2+y2+6x-4y=0相交所得弦的长为4$\sqrt{3}$.分析 求出圆的圆心坐标,求出半径,利用圆心到直线的距离,利用勾股定理求出半弦长,即可得到结果.
解答 解:圆x2+y2+6x-4y=0的圆心坐标(-3,2),半径为$\sqrt{13}$;
圆心到直线的距离为:$\frac{|-9+8-4|}{5}$=1,
所以弦长为2$\sqrt{13-1}$=4$\sqrt{3}$,
故答案为4$\sqrt{3}$.
点评 直线与圆的关系中,弦心距、半径、弦长的关系,是高考考点,考查计算能力,本题是基础题.
练习册系列答案
相关题目
20.在△ABC中,∠C=90°,且CA=CB=3,点M满足$\overrightarrow{BM}$=2$\overrightarrow{AM}$,则$\overrightarrow{CM}$$•\overrightarrow{CA}$=( )
| A. | 18 | B. | 3 | C. | 15 | D. | 9 |
1.设x>0,0<bx<ax<1,则正实数a,b的大小关系为( )
| A. | 1>a>b | B. | 1>b>a | C. | 1<a<b | D. | 1<b<a |
18.在一球面上有A,B,C三点,如果AB=4$\sqrt{3}$,∠ACB=60°,球心O到平面ABC的距离为3,则球O的表面积为( )
| A. | 36π | B. | 64π | C. | 100π | D. | 144π |
5.如图是一个棱锥的三视图,则该棱锥的体积为( )

| A. | 12 | B. | 4 | C. | 6 | D. | 2 |
15.已知函数f(x)=sin(2x+$\frac{π}{3}$),则f(x)满足( )
| A. | 最大值为2 | B. | 图象关于点($\frac{π}{3}$,0)对称 | ||
| C. | 图象关于直线x=-$\frac{π}{3}$对称 | D. | 在(0,$\frac{π}{4}$)上为增函数 |
2.若实数x,y满足不等式组$\left\{\begin{array}{l}{x-y+2≥0}\\{x+2y-4≥0}\\{2x+y-5≤0}\end{array}\right.$且3(x-a)+2(y+1)的最大值为5,则a等于( )
| A. | -2 | B. | -1 | C. | 2 | D. | 1 |
13.“a3>b3”是“lna>lnb”的( )
| A. | 充分而不必要条件 | B. | 必要而不充分条件 | ||
| C. | 充分必要条件 | D. | 既不充分也不必要条件 |