题目内容
现有10个数,它们能构成一个以1为首项,-3为公比的等比数列,若从这10个数中随机抽取一个数,则它小于8的概率是( )
A、
| ||
B、
| ||
C、
| ||
D、
|
考点:古典概型及其概率计算公式
专题:概率与统计
分析:先由题意写出成等比数列的10个数为,然后找出小于8的项的个数,代入古典概论的计算公式即可求解
解答:
解:由题意成等比数列的10个数为:1,-3,(-3)2,(-3)3…(-3)9
其中小于8的项有:1,-3,(-3)3,(-3)5,(-3)7,(-3)9共6个数
这10个数中随机抽取一个数,
则它小于8的概率是P=
=
.
故选:C.
其中小于8的项有:1,-3,(-3)3,(-3)5,(-3)7,(-3)9共6个数
这10个数中随机抽取一个数,
则它小于8的概率是P=
| 6 |
| 10 |
| 3 |
| 5 |
故选:C.
点评:本题主要考查了等比数列的通项公式及古典概率的计算公式的应用,属于基础试题
练习册系列答案
相关题目
对于定义在R上的函数f(x),以下四个命题中错误的是 ( )
| A、若f(x)是奇函数,则f(x-2)的图象关于点A(2,0)对称 |
| B、若函数f(x-2)的图象关于直线x=2对称,则f(x)为偶函数 |
| C、若对x∈R,有f(x-2)=-f(x),则4是f(x)的周期 |
| D、函数y=f(x-2)与y=f(2-x)的图象关于直线x=0对称 |
各项均为实数的等比数列{an}中,a1=1,a5=4,则a3=( )
| A、2 | ||
| B、-2 | ||
C、
| ||
D、-
|
已知函数f(x)=2x2-bx(b∈R),则下列结论正确的是( )
| A、?b∈R,f(x)在(0,+∞)上是增函数 |
| B、?b∈R,f(x)在(0,+∞)上是减函数 |
| C、?b∈R,f(x)为奇函数 |
| D、?b∈R,f(x)为偶函数 |