题目内容

设数列的首项a1=a(a≠
1
4
),an+1=
1
2
an,n=2k
an+
1
4
,n=2k-1
(k∈N*),且bn=a2n-1-
1
4
(n∈N*).
(1)求a2,a3
(2)判断数列{bn}是否为等比数列,并证明你的结论;
(3)求
lim
n→∞
(b1+b2+…+bn).
考点:数列的极限,数列递推式
专题:等差数列与等比数列
分析:(1)利用an+1=
1
2
an,n=2k
an+
1
4
,n=2k-1
(k∈N*),分别取n=1,2即可得出;
(2)由于bn=a2n-1-
1
4
(n∈N*),可得bn+1=a2n+1-
1
4
=
1
2
a2n
-
1
4
=
1
2
(a2n-1+
1
4
)
-
1
4
=
1
2
(a2n-1-
1
4
)
=
1
2
bn
,即可证明数列{bn}是等比数列.
(3)由(2)可得bn=(a-
1
4
)•(
1
2
)n-1
.再利用等比数列的前n项和公式及其数列极限的运算法则即可得出.
解答: 解:(1)∵an+1=
1
2
an,n=2k
an+
1
4
,n=2k-1
(k∈N*),a1=a.
∴a2=a1+
1
4
=a+
1
4
a3=
1
2
a2
=
1
2
a+
1
8

(2)数列{bn}是等比数列,下面给出证明.
∵bn=a2n-1-
1
4
(n∈N*),
∴bn+1=a2n+1-
1
4
=
1
2
a2n
-
1
4
=
1
2
(a2n-1+
1
4
)
-
1
4
=
1
2
(a2n-1-
1
4
)
=
1
2
bn

∴数列{bn}是等比数列,首项b1=a1-
1
4
=a-
1
4
(a≠
1
4
)
,公比为
1
2

(3)由(2)可得bn=(a-
1
4
)•(
1
2
)n-1

∴b1+b2+…+bn=
(a-
1
4
)(1-
1
2n
)
1-
1
2
=2(a-
1
4
)(1-
1
2n
)

lim
n→∞
(b1+b2+…+bn)=
lim
n→∞
2(a-
1
4
)(1-
1
2n
)
=2a-
1
2
点评:本题考查了分段数列的意义、等比数列的通项公式及其前n项和公式、数列极限的运算法则,考查了推理能力与计算能力,属于难题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网