题目内容
14.为了监控某种零件的一条生产线的生产过程,检验员每天从该生产线上随机抽取16个零件,并测量其尺寸(单位:cm)根据长期生产经验,可以认为这条生产线正常状态下生产的零件的尺寸服从正态分布N(μ,σ2),假设生产状态正常,记X表示一天内抽取的16个零件中其尺寸在(μ-3σ,μ+3σ)之外的零件数,则P(X≥1)=( )附:若随机变量Z服从正态分布N(μ,σ2),则P(μ-3σ<Z<μ+3σ)=0.9974,0.997416≈0.9592.
| A. | 0.0026 | B. | 0.0408 | C. | 0.0416 | D. | 0.9976 |
分析 通过P(X=0)可求出P(X≥1)=1-P(X=0)=0.0408,从而得到答案.
解答 解:由题可知尺寸落在(μ-3σ,μ+3σ)之内的概率为0.9974,
则落在(μ-3σ,μ+3σ)之外的概率为1-0.9974=0.0026,
因为P(X=0)=${C}_{16}^{0}$×(1-0.9974)0×0.997416≈0.9592,
所以P(X≥1)=1-P(X=0)=0.0408,
故选:B.
点评 本题考查正态分布,考查二项分布,考查运算求解能力,注意解题方法的积累.
练习册系列答案
相关题目
9.已知直线ax+y+1=0与x+(a+$\frac{3}{2}$)y+2=0平行,则实数a=( )
| A. | $\frac{1}{2}$ | B. | -2 | C. | $\frac{1}{2}$或-2 | D. | 2或-$\frac{1}{2}$ |
19.与角-$\frac{π}{3}$终边相同的角是( )
| A. | $\frac{5π}{3}$ | B. | $\frac{11π}{6}$ | C. | -$\frac{5π}{6}$ | D. | -$\frac{2π}{3}$ |
6.将-$\frac{\sqrt{3}}{2}$cosα-$\frac{1}{2}$sinα化成Asin(α+β)(A>0,0<β<2π)的形式,以下式子正确的是( )
| A. | sin(α+$\frac{4π}{3}$) | B. | sin(α+$\frac{7π}{6}$) | C. | -sin(α+$\frac{π}{3}$) | D. | sin(α-$\frac{2π}{3}$) |