题目内容

3.已知a∈R,x∈R,$A=\left\{{2,4,x_{\;}^2-5x+9}\right\}$,$B=\left\{{3,x_{\;}^2+ax+a}\right\}$,$C=\left\{{1,x_{\;}^2+(a+1)x-3}\right\}$.
求(1)使2∈B,B⊆A的a,x的值;
(2)使B=C的a,x的值.

分析 (1)由x2+ax+a=2与x2-5x+9=3联立即可求得a,x的值;
(2)由B=C,可得x2+(a+1)x-3=3与x2+ax+a=1,求解即可得a,x的值.

解答 解:(1)∵2∈B,B?A,
∴$\left\{\begin{array}{l}2=x_{\;}^2+ax+a\\ 3=x_{\;}^2-5x+9\end{array}\right.$,解得$\left\{\begin{array}{l}x=2\\ a=-\frac{2}{3}\end{array}\right.$或$\left\{\begin{array}{l}x=3\\ a=-\frac{7}{4}\end{array}\right.$.
∴x=2,$a=-\frac{2}{3}$或x=3,$a=-\frac{7}{4}$;
(2)∵B=C,∴$\left\{\begin{array}{l}x_{\;}^2+(a+1)x-3=3\\ x_{\;}^2+ax+a=1\end{array}\right.$,解得$\left\{\begin{array}{l}x=-1\\ a=-6\end{array}\right.$或$\left\{\begin{array}{l}x=3\\ a=-2\end{array}\right.$.
∴x=-1,a=-6或x=3,a=-2.

点评 本题考查了利用集合相等的条件确定元素的关系,考查方程思想运算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网