题目内容

已知数列{an}中,a1=2,an+1=an2+2an(n∈N+).
(1)证明:数列{log2(an+1)}是等比数列,并求数列{an}的通项公式;
(2)记bn=
1
an
+
1
an+2
,求数列{bn}的前n项和Sn
考点:数列的求和,等比数列的性质
专题:等差数列与等比数列
分析:(1)由已知得log2(an+1+1)=log2(an+1)2=2log2(an+1),log2(a1+1)=log23,由此能证明数列{log2(an+1)}是首项为log23,公比为2的等比数列,从而求出an=32n-1-1
(2)由an+1=an2+2an(n∈N+),两边取对数,得
2
an+1
=
1
an
-
1
an+2
,从而
1
an+2
=
1
an
-
2
an+1
,进而bn=2(
1
an
-
1
an+1
),由此利用裂项求和法能求出数列{bn}的前n项和Sn
解答: (1)证明:∵数列{an}中,a1=2,an+1=an2+2an(n∈N+),
∴an+1+1=an2+2an+1=(an+1)2
∴log2(an+1+1)=log2(an+1)2=2log2(an+1),
log2(an+1+1)
log2(an+1)
=2,
又log2(a1+1)=log23,
∴数列{log2(an+1)}是首项为log23,公比为2的等比数列,
∴log2(an+1)=log23•2n-1
an+1=32n-1
an=32n-1-1
(2)解:∵an+1=an2+2an(n∈N+),
两边取对数,得
2
an+1
=
1
an
-
1
an+2

1
an+2
=
1
an
-
2
an+1

∵bn=
1
an
+
1
an+2
,∴bn=2(
1
an
-
1
an+1
),
∴Sn=2[(
1
a1
-
1
a2
)+(
1
a2
-
1
a3
)+…+(
1
an
-
1
an+1
)]
=2(
1
a1
-
1
an+1

=1-
2
32n-1
点评:本题考查等比数列的证明,考查数列的通项公式的求法,考查数列的前n项和的求法,解题时要认真审题,注意裂项求和法的合理运用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网