题目内容
7.等比数列{an}中,a3=9前三项和为S3=${∫}_{0}^{3}$3x2dx,则公比q的值是1或-$\frac{1}{2}$.分析 先根据定积分的定义求出前三项和S3,然后根据a3=9,S3=27,建立q的方程,解之即可求出公比q.
解答 解:S3=${∫}_{0}^{3}$3x2dx=x3|${\;}_{0}^{3}$=27,
则a1=a3q-2=9q-2,a2=a3q-1=9q-1,
∴9q-2+9q-1+9=27,
即2q2-q-1=0,
解得q=1,或q=-$\frac{1}{2}$
故答案为:1或-$\frac{1}{2}$
点评 本题主要考查等比数列的计算,根据条件建立方程是解决本题的关键,考查学生的计算能力.
练习册系列答案
相关题目
18.已知双曲线C:$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{{b}^{2}}=1$(a>0,b>0)的右焦点为F,点B是虚轴的一个端点,线段BF与双曲线C的右支交于点A,若$\overrightarrow{BA}=2\overrightarrow{AF}$,则双曲线C的离心率( )
| A. | $\frac{\sqrt{10}}{2}$ | B. | $\frac{\sqrt{6}}{2}$ | C. | $\frac{5}{2}$ | D. | $\frac{3}{2}$ |
15.设S是由任意n≥5个人组成的集合,如果S中任意4个人当中都至少有1个人认识其余3个人,那么,下面的判断中正确的是( )
| A. | S中没有人认识S中所有的人 | B. | S中至多有2人认识S中所有的人 | ||
| C. | S中至多有2人不认识S中所有的人 | D. | S中至少有1人认识S中的所有人 |
2.已知椭圆的两个焦点为F1(-$\sqrt{5}$,0),F2($\sqrt{5}$,0),M是椭圆上一点,若MF1⊥MF2,|MF1||MF2|=8,则该椭圆的方程是( )
| A. | $\frac{{x}^{2}}{7}$+$\frac{{y}^{2}}{2}$=1 | B. | $\frac{{x}^{2}}{2}$+$\frac{{y}^{2}}{7}$=1 | C. | $\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{4}$=1 | D. | $\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{9}$=1 |
12.点A(sin2015°,cos2015°)位于( )
| A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
16.水平放置的矩形ABCD,长AB=4,宽BC=2,以AB、AD为轴作出斜二测直观图A′B′C′D′,则四边形A′B′C′D′的面积为( )
| A. | 4$\sqrt{2}$ | B. | 2$\sqrt{2}$ | C. | 4 | D. | 2 |