题目内容

18.已知函数f(x)=axlnx+bx(a≠0)在(1,f(1))处的切线与x轴平行,
(1)试讨论f(x)在(0,+∞)上的单调性;
(2)若存在a∈(e,+∞),对任意的${x_1},{x_2}∈[\frac{1}{3}e,3e]$都有|f(x1)-f(x2)|<(m+eln3)a+3e成立,求实数m的取值范围.(e=2.71828…)

分析 (1)求出函数的导数,通过讨论a的范围,求出函数的单调区间即可;
(2)根据函数的单调性求出f(x)的最大值和最小值,问题转化为m>2eln3+1-$\frac{3e}{a}$,令g(a)=2eln3+1-$\frac{3e}{a}$,(a∈(e,+∞)),根据函数的单调性求出m的范围即可.

解答 解:(1)∵f′(x)=alnx+a+b,
∴f′(1)=a+b=0,故b=-a,
∴f(x)=axlnx-ax,且f′(x)=alnx,
当a>0时,x∈(0,1)时,f′(x)<0,x∈(1,+∞)时,f′(x)>0,
∴f(x)在(0,1)递减,在(1,+∞)递增;
a<0时,x∈(0,1)时,f′(x)>0,x∈(1,+∞)时,f′(x)<0,
∴f(x)在(0,1)递增,在(1,+∞)递减;
(2)∵a∈(e,+∞),
∴f(x)在(0,1)递减,在(1,+∞)递增,
又f($\frac{1}{3}$e)=$\frac{1}{3}$aeln$\frac{1}{3}$<0,f(1)=-a,f(3e)=3aeln3>0,
∴x∈[$\frac{1}{3}$e,3e]时,f(x)max=f(3e)=3aeln3,f(x)min=f(1)=-a,
∴若对任意x1,x2∈[$\frac{1}{3}$e,3e]都有|f(x1)-f(x2)|<(m+eln3)a+3e成立,
只需(m+eln3)a+3e>f(3e)-f(1)=3aeln3+a,
即m>2eln3+1-$\frac{3e}{a}$,
令g(a)=2eln3+1-$\frac{3e}{a}$,(a∈(e,+∞)),
易知g(a)>g(e)=2eln3-2,
∵存在a∈(e,+∞),使得m>2eln3+1-$\frac{3e}{a}$成立,
∴m>2eln3-2,
故实数m的范围是(2eln3-2,+∞).

点评 本题考查了函数的单调性、最值问题,考查导数的应用以及分类讨论思想,转化思想,是一道中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网