题目内容
9.要得到函数f(x)=sin2x+$\sqrt{3}$cos2x的图象,可将y=2sin2x的图象向左平移多少个单位( )| A. | $\frac{π}{6}$个 | B. | $\frac{π}{3}$个 | C. | $\frac{π}{4}$个 | D. | $\frac{π}{12}$个 |
分析 根据两角和差的正弦公式求得 f(x)的解析式,再利用函数y=Asin(ωx+φ)的图象变换规律,得出结论.
解答 解:由于函数f(x)=sin2x+$\sqrt{3}$cos2x=2($\frac{1}{2}$sin2x+$\frac{\sqrt{3}}{2}$cos2x)=2sin(2x+$\frac{π}{3}$),
故将y=2sin2x的图象向左平移$\frac{π}{6}$个单位,可得 f(x)=2sin(2x+$\frac{π}{3}$)的图象,
故选:A.
点评 本题主要考查两角和差的正弦公式,函数y=Asin(ωx+φ)的图象变换规律,属于基础题.
练习册系列答案
相关题目
4.
若某圆柱体的上部挖掉一个半球,下部挖掉一个圆锥后所得的几何体的三视图中的正(主)视图和侧(左)视图如图所示,则此时几何体的体积是( )
| A. | 2π | B. | $\frac{4π}{3}$ | C. | π | D. | $\frac{π}{2}$ |
18.用平行于圆锥底面的截面去截圆锥,所得小圆锥的侧面积与原来大圆锥的侧面积的比是$\frac{1}{2}$,则小圆锥的高与大圆锥的高的比是( )
| A. | $\frac{1}{2}$ | B. | 1 | C. | $\frac{\sqrt{2}}{2}$ | D. | $\sqrt{2}$ |