题目内容
公差不为零的等差数列{an}中,a1+a3+a5=9,且a1、a2、a4成等比数列,则数列{an}的公差等于 .
考点:等比数列的通项公式,等差数列的通项公式
专题:等差数列与等比数列
分析:由已知得
,由此能求出数列{an}的公差.
|
解答:
解:∵公差不为零的等差数列{an}中,
a1+a3+a5=9,且a1、a2、a4成等比数列,
∴
,
解得a1=d=1.
故答案为:1.
a1+a3+a5=9,且a1、a2、a4成等比数列,
∴
|
解得a1=d=1.
故答案为:1.
点评:本题考查数列的公差的求法,是基础题,解题时要认真审题,注意等差数列和等比数列的性质的合理运用.
练习册系列答案
相关题目
已知O是△ABC的重心,且35a
+21b
+15c
=
,则C=( )
| OA |
| OB |
| OC |
| 0 |
| A、30° | B、60° |
| C、90° | D、120° |