题目内容
7.若x,y满足$\left\{\begin{array}{l}y≥0,\;\;\;\\ 2x-y≥0,\;\;\;\\ x+y-3≤0\end{array}\right.$则2x+y的最大值为6.分析 由约束条件作出可行域,数形结合得到最优解,求出最优解的坐标,代入目标函数得答案.
解答
解:作出不等式组对应的平面区域如图:(阴影部分).
设z=2x+y得y=-2x+z,
平移直线y=-2x+z,
由图象可知当直线y=-2x+z经过点A时,直线y=-2x+z的截距最大,
此时z最大,而A(3,0),
代入目标函数z=2x+y得z=3×2+0=6.
即目标函数z=2x+y的最大值为6.
故答案为:6.
点评 本题考查了简单的线性规划,考查了数形结合的解题思想方法,是中档题.
练习册系列答案
相关题目
17.已知全集U=R,集合A={x|2x<1},B={x|x-2<0},则(∁UA)∩B=( )
| A. | {x|x>2} | B. | {x|0≤x<2} | C. | {x|0<x≤2} | D. | {x|x≤2} |
2.
已知函数$f(x)=2sin(ωx+φ)(ω>0,|φ|<\frac{π}{2})$的图象如图所示,则函数f(x)的解析式的值为( )
| A. | $f(x)=2sin(2x+\frac{π}{6})$ | B. | $f(x)=2sin(2x+\frac{π}{3})$ | C. | $f(x)=2sin(x+\frac{π}{6})$ | D. | $f(x)=2sin(x+\frac{π}{3})$ |
19.一个几何体的三视图如图所示,则这个几何体的直观图为( )

| A. | B. | C. | D. |
16.已知某四棱锥的三视图如右图所示,则该几何体的体积为( )

| A. | $\frac{{2\sqrt{3}}}{3}$ | B. | $\frac{{4\sqrt{3}}}{3}$ | C. | 2 | D. | $\frac{{5\sqrt{3}}}{3}$ |
17.
一个高为2的三棱锥的三视图如图所示,其中俯视图是一个腰长为2的等腰直角三角形,则该几何体外接球的体积( )
| A. | 12π | B. | 9π | C. | $4\sqrt{3}π$ | D. | $\sqrt{3}π$ |