题目内容
在平面直角坐标系xOy中,若双曲线-=1的离心率为,则m的值为 .
2
如图,已知△ABC中的两条角平分线AD和CE相交于H,∠B=60°,F在AC上,且AE=AF.
(1)证明:B,D,H,E四点共圆;
(2)证明:CE平分∠DEF.
已知F1、F2为双曲线C:x2-y2=1的左、右焦点,点P在C上,∠F1PF2=60°,则P到x轴的距离为( )
(A) (B) (C) (D)
设P为直线y=x与双曲线-=1(a>0,b>0)左支的交点,F1是左焦点,PF1垂直于x轴,则双曲线的离心率e= .
双曲线-=1的两条渐近线的方程为 .
已知双曲线-=1的一个焦点与圆x2+y2-10x=0的圆心重合,且双曲线的离心率等于,则该双曲线的标准方程为 .
已知双曲线-=1(b∈N*)的左、右两个焦点为F1、F2,P是双曲线上的一点,且满足|PF1||PF2|=|F1F2|2,|PF2|<4.
(1)求b的值;
(2)抛物线y2=2px(p>0)的焦点与该双曲线的右顶点重合,斜率为1的直线经过右顶点,与该抛物线交于A、B两点,求弦长|AB|.
椭圆+=1的离心率为( )
已知双曲线-=1(a>0,b>0)的左顶点与抛物线y2=2px(p>0)的焦点的距离为4,且双曲线的一条渐近线与抛物线的准线的交点坐标为(-2,-1),则双曲线的焦距为( )
(A)2 (B)2 (C)4 (D)4