题目内容

已知抛物线y2=4x,点M(1,0)关于y轴的对称点为N,直线l过点M交抛物线于A,B两点,
(1)证明:直线NA,NB的斜率互为相反数;
(2)求△ANB面积的最小值.
考点:抛物线的简单性质
专题:圆锥曲线中的最值与范围问题
分析:(1)如图所示,设直线l的方程为:x=my+1,A(x1,y1),B(x2,y2).与抛物线方程联立可得根与系数的关系,利用斜率计算公式可得kNA=
y1
x1+1
,kNB=
y2
x2+1
,只有证明kNA+kNB=0即可.
(2)利用S△ANB=
1
2
|MN||y1-y2|
=|y1-y2|=
(y1+y2)2-4y1y2
=
16m2+16
即可得出.
解答: (1)证明:如图所示,
设直线l的方程为:x=my+1,A(x1,y1),B(x2,y2).
联立
x=my+1
y2=4x
,化为y2-4my-4=0,△>0,
∴y1+y2=4m,y1y2=-4.
kNA=
y1
x1+1
,kNB=
y2
x2+1

∴kNA+kNB=
y1
x1+1
+
y2
x2+1
=
y1(x2+1)+y2(x1+1)
(x1+1)(x2+1)
=
2my1y2+2(y1+y2)
(x1+1)(x2+1)
=
-8m+8m
(x1+1)(x2+1)
=0,
∴直线NA,NB的斜率互为相反数.
(2)解:S△ANB=
1
2
|MN||y1-y2|
=|y1-y2|=
(y1+y2)2-4y1y2
=
16m2+16
≥4,
当且仅当m=0时取等号.
∴当AB⊥x轴时,△ANB面积取得最小值4.
点评:本题考查了直线与抛物线相交转化为方程联立可得根与系数的关系、斜率计算公式、三角形的面积计算公式、二次函数的单调性,考查了推理能力与计算能力,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网