题目内容
3.在△ABC中,内角A,B,C的对边分别为a,b,c,O是△ABC外接圆的圆心,若$\sqrt{2}αcosB=\sqrt{2}c-b$,且$\frac{cosB}{sinC}\overrightarrow{AB}+\frac{cosC}{sinB}\overrightarrow{AC}=m\overrightarrow{AO}$,则m的值是( )| A. | $\frac{{\sqrt{2}}}{4}$ | B. | $\frac{{\sqrt{2}}}{2}$ | C. | $\sqrt{2}$ | D. | $2\sqrt{2}$ |
分析 由$\sqrt{2}αcosB=\sqrt{2}c-b$,得$\sqrt{2}cosAsinB-sinB=0$,即cosA=$\frac{\sqrt{2}}{2}$,得A=$\frac{π}{4}$.
由$\frac{cosB}{sinC}\overrightarrow{AB}+\frac{cosC}{sinB}\overrightarrow{AC}=m\overrightarrow{AO}$,得$\frac{cosB}{snC}{\overrightarrow{AB}}^{2}+\frac{cosC}{sinB}\overrightarrow{AC}•\overrightarrow{AB}=m\overrightarrow{AO}•\overrightarrow{AB}$,
⇒$cosB+cosAcosC=\frac{1}{2}msinC$
则m=2×$\frac{cosB+cosAcosC}{sinC}$=2×$\frac{-cos(A+C)+cosAcosC}{sinC}$=2×$\frac{sinAsinC}{sinC}=2sinA$.
解答 解:∵$\sqrt{2}αcosB=\sqrt{2}c-b$,∴$\sqrt{2}sinAcosB=\sqrt{2}sin(A+B)-sinB$
⇒$\sqrt{2}sinAcosB=\sqrt{2}sinAcosB+\sqrt{2}cosAsinB-sinB\\;\\;\\;\$
⇒$\sqrt{2}cosAsinB-sinB=0$,∴cosA=$\frac{\sqrt{2}}{2}$,得A=$\frac{π}{4}$.
∵O是△ABC外接圆的圆心,∴$\overrightarrow{AO}•\overrightarrow{AB}=\frac{1}{2}{\overrightarrow{AB}}^{2}=\frac{1}{2}{c}^{2}$
由$\frac{cosB}{sinC}\overrightarrow{AB}+\frac{cosC}{sinB}\overrightarrow{AC}=m\overrightarrow{AO}$,得$\frac{cosB}{snC}{\overrightarrow{AB}}^{2}+\frac{cosC}{sinB}\overrightarrow{AC}•\overrightarrow{AB}=m\overrightarrow{AO}•\overrightarrow{AB}$,
⇒$\frac{cosB}{sinC}{c}^{2}+\frac{cosC}{sinB}bccosA=m×\frac{1}{2}{c}^{2}$⇒$\frac{cosB}{sinC}c+\frac{cosC}{sinB}bcosA=\frac{1}{2}mc$
⇒$cosB+cosAcosC=\frac{1}{2}msinC$
∴m=2×$\frac{cosB+cosAcosC}{sinC}$=2×$\frac{-cos(A+C)+cosAcosC}{sinC}$
=2×$\frac{sinAsinC}{sinC}=2sinA$=$\sqrt{2}$.
故选:C
点评 本题综合考查了三角形的外接圆的性质、向量的三角形法则、数量积运算、正弦定理、三角形的内角和定理、两角和的圆心公式等基础知识与基本技能,考查了数形结合的能力、推理能力、计算能力.
| A. | a>0 | B. | a≥0 | C. | a≤0 | D. | a<0 |
| A. | 五寸 | B. | 二尺五寸 | C. | 三尺五寸 | D. | 一丈二尺五寸 |
| A. | (-∞,0)∪(3,+∞) | B. | {x|x>3,x∈N} | C. | {4,8} | D. | [4,8] |