题目内容
5.若等差数列{an}的公差为2,且a5是a2与a6的等比中项,则该数列的前n项和Sn取最小值时,n的值等于( )| A. | 7 | B. | 6 | C. | 5 | D. | 4 |
分析 由题意可得,运用等差数列的通项公式和等比数列的中项的性质,解方程可得a1,结合已知公差,代入等差数列的通项可求,判断数列的单调性和正负,即可得到所求和的最小值时n的值
解答 解:由a5是a2与a6的等比中项,
可得a52=a2a6,
由等差数列{an}的公差d为2,
即(a1+8)2=(a1+2)(a1+10),
解得a1=-11,
an=a1+(n-1)d=-11+2(n-1)=2n-13,
由a1<0,a2<0,…,a6<0,a7>0,…
可得该数列的前n项和Sn取最小值时,n=6.
故选:B.
点评 等差数列与等比数列是高考考查的基本类型,本题考查等差数列的通项公式的运用,同时考查等比数列的中项的性质,以及等差数列的单调性和前n项和的最小值,属于中档题.
练习册系列答案
相关题目
16.“关于x的方程x2-mx+n=0有两个正根”是“方程mx2+ny2=1的曲线是椭圆”的( )
| A. | 充分不必要条件 | B. | 必要不充分条件 | ||
| C. | 充要条件 | D. | 既不充分也不必要条件 |
20.已知函数f(x)=x$({{e^x}-\frac{1}{e^x}})$,若f(x1)<f(x2),则( )
| A. | x1>x2 | B. | x1<x2 | C. | ${x}_{1}^{2}$<${x}_{2}^{2}$ | D. | x1+x2=0 |
10.若一个几何体的三视图都是如图所示的边长为2的正方形,则该几何体的外接球的表面积是( )

| A. | π | B. | 2π | C. | 4π | D. | 8π |
17.将二项式${(x+\frac{2}{{\sqrt{x}}})^6}$展开式各项重新排列,则其中无理项互不相邻的概率是( )
| A. | $\frac{2}{7}$ | B. | $\frac{1}{35}$ | C. | $\frac{8}{35}$ | D. | $\frac{7}{24}$ |
14.为推行“新课堂”教学法,某化学老师分别用传统教学和“新课堂”两种不同的教学方式,在甲、乙两个平行班进行教学实验,为了解教学效果,期中考试后,分别从两个班级中各随机抽取20名学生的成绩进行统计,作出的茎叶图如图,记成绩不低于70分者为“成绩优良”.

(1)分别计算甲、乙两班20个样本中,化学分数前十的平均分,并据此判断哪种教学方式的教学效果更
佳;
(2)甲、乙两班40个样本中,成绩在60分以下的学生中任意选取2人,求这2人来自不同班级的概率;
(3)由以上统计数据填写下面2×2列联表,并判断能否在犯错误的概率不超过0.05的前提下认为“成绩优良与教学方式有关”?
附:${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+c)(b+d)(a+b)(c+d)},(n=a+b+c+d)$
独立性检验临界值表:
(1)分别计算甲、乙两班20个样本中,化学分数前十的平均分,并据此判断哪种教学方式的教学效果更
佳;
(2)甲、乙两班40个样本中,成绩在60分以下的学生中任意选取2人,求这2人来自不同班级的概率;
(3)由以上统计数据填写下面2×2列联表,并判断能否在犯错误的概率不超过0.05的前提下认为“成绩优良与教学方式有关”?
| 甲班 | 乙班 | 总计 | |
| 成绩优良 | 10 | 16 | 26 |
| 成绩不优良 | 10 | 4 | 14 |
| 总计 | 20 | 20 | 40 |
独立性检验临界值表:
| P(K2≥k0) | 0.10 | 0.05 | 0.025 | 0.010 |
| k0 | 2.706 | 3.841 | 5.024 | 6.635 |
9.已知直线l1:y=ax-2a+5过定点A,则点A到直线l:x-2y+3=0的距离为( )
| A. | $2\sqrt{5}$ | B. | $\frac{{\sqrt{5}}}{5}$ | C. | $\sqrt{5}$ | D. | $\frac{{2\sqrt{5}}}{5}$ |