题目内容

12.已知函数f(x)=|x+a|+|x-2|.
(1)若f(x)的最小值为4,求实数a的值;
(2)若-1≤x≤0时,不等式f(x)≤|x-3|恒成立,求实数a的取值范围.

分析 (1)根据绝对值的意义得到|a+2|=4,求出a的值即可;(2)由|x+a|≤1在[-1,0]恒成立得到(-1-x)max≤a≤(1-x)min,求出a的范围即可.

解答 解:(1)∵f(x)=|x-2|+|x+a|≥|(x-2)-(x+a)|=|a+2|,
当且仅当(x-2)(x+a)≤0时取等号,
∴f(x)min=|a+2|,
由|a+2|=4,解得:a=2或a=-6;
(2)原命题等价于|x+a|+2-x≤3-x在[-1,0]恒成立,
即|x+a|≤1在[-1,0]恒成立,
即-1-x≤a≤1-x在[-1,0]恒成立,
即(-1-x)max≤a≤(1-x)min
故a∈[0,1].

点评 本题考查了解绝对值不等式问题,考查绝对值的性质以及转化思想,是一道中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网