ÌâÄ¿ÄÚÈÝ
¢Ùµ±CQ=1ʱ£¬SµÄÃæ»ýΪ
| ||
| 2 |
¢Úµ±
| 3 |
| 4 |
¢Ûµ±CQ=
| 3 |
| 4 |
| 1 |
| 3 |
¢Üµ±CQ=
| 1 |
| 2 |
¢Ýµ±0£¼CQ£¼
| 1 |
| 2 |
¿¼µã£ºÃüÌâµÄÕæ¼ÙÅжÏÓëÓ¦ÓÃ
רÌ⣺¿Õ¼äλÖùØÏµÓë¾àÀë
·ÖÎö£º¢Ù£¬µ±CQ=1ʱ£¬µãQÓëµãC1ÖØºÏ£¬Èçͼ֪£¬½ØÃæSΪÁâÐΣ¬Ò×ÇóÆäÃæ»ýΪ
£¬¿ÉÅжϢ٣»
È¡ADµÄÖеãM£¬ÔÚDD1ÉÏÈ¡µãN£¬Ê¹µÃDN=CQ£¬ÔòMN¡ÎPQ£»×÷AT¡ÎMN£¬½»Ö±ÏßDD1ÓÚµãT£¬ÔòA¡¢P¡¢Q¡¢TËÄµã¹²Ãæ£»
¢Ú£¬µ±
£¼CQ£¼1ʱ£¬
£¼DN£¼1⇒DT=2DN¡Ê£¨
£¬2£©£¬TÔÚDD1µÄÑÓ³¤ÏßÉÏ£¬ÉèTQÓëC1D1½»ÓÚµãE£¬ATÓëA1D1½»ÓÚµãF£¬ÔòSΪÎå±ßÐÎAPQEF£¬¿ÉÅжϢڣ»
¢Û£¬µ±CQ=
ʱ£¬ÔòDN=
⇒DT=2DN=
⇒D1T=
£»ÓÉD1R£ºTD1=BC£ºDT¿ÉÇóµÃD1R=
£¬¼Ì¶ø¿ÉµÃC1R=
£¬¿ÉÅжϢۣ»
¢Ü£¬µ±CQ=
ʱ£¬ÔòDN=
£¬Ò×ÖªµãTÓëD1ÖØºÏ£¬´Ó¶øÖªSΪµÈÑüÌÝÐÎAPQD1£¬¿ÉÅжϢܣ»
¢Ý£¬µ±0£¼CQ£¼
ʱ£¬Ôò0£¼DN£¼
⇒DT=2DN£¼1⇒SΪËıßÐÎAPQT£¬¿ÉÅжϢݣ»£®
| ||
| 2 |
È¡ADµÄÖеãM£¬ÔÚDD1ÉÏÈ¡µãN£¬Ê¹µÃDN=CQ£¬ÔòMN¡ÎPQ£»×÷AT¡ÎMN£¬½»Ö±ÏßDD1ÓÚµãT£¬ÔòA¡¢P¡¢Q¡¢TËÄµã¹²Ãæ£»
¢Ú£¬µ±
| 3 |
| 4 |
| 3 |
| 4 |
| 3 |
| 2 |
¢Û£¬µ±CQ=
| 3 |
| 4 |
| 3 |
| 4 |
| 3 |
| 2 |
| 1 |
| 2 |
| 3 |
| 2 |
| 1 |
| 3 |
¢Ü£¬µ±CQ=
| 1 |
| 2 |
| 1 |
| 2 |
¢Ý£¬µ±0£¼CQ£¼
| 1 |
| 2 |
| 1 |
| 2 |
½â´ð£º
½â£º¶ÔÓÚ¢Ù£¬µ±CQ=1ʱ£¬µãQÓëµãC1ÖØºÏ£¬´Ëʱ¹ýµãA£¬P£¬QµÄÆ½ÃæÓëA1D1ÏཻÓÚR£¬ÇÒµãRΪA1D1µÄÖе㣬

´Ëʱ£¬½ØÃæAPQRΪÁâÐΣ¬¸ÃÁâÐεÄÁ½Ìõ¶Ô½ÇÏß·Ö±ðΪ£ºAQ=
£¬PR=
£¬
ËùÒÔS=
¡Á
¡Á
=
£¬¹Ê¢ÙÕýÈ·£»
È¡ADµÄÖеãM£¬ÔÚDD1ÉÏÈ¡µãN£¬Ê¹µÃDN=CQ£¬ÔòMN¡ÎPQ£»×÷AT¡ÎMN£¬½»Ö±ÏßDD1ÓÚµãT£¬ÔòA¡¢P¡¢Q¡¢TËÄµã¹²Ãæ£»

¶ÔÓÚ¢Ú£¬µ±
£¼CQ£¼1ʱ£¬
£¼DN£¼1⇒DT=2DN¡Ê£¨
£¬2£©£¬TÔÚDD1µÄÑÓ³¤ÏßÉÏ£¬ÉèTQÓëC1D1½»ÓÚµãE£¬ATÓëA1D1½»ÓÚµãF£¬ÔòSΪÎå±ßÐÎAPQEF£¬¹Ê¢Ú´íÎó£»
¶ÔÓÚ¢Û£¬µ±CQ=
ʱ£¬ÔòDN=
⇒DT=2DN=
⇒D1T=
£»ÓÉD1R£ºTD1=BC£ºDT⇒D1R=
⇒C1R=
£¬¹Ê¢ÛÕýÈ·£»
¶ÔÓڢܣ¬µ±CQ=
ʱ£¬ÔòDN=
⇒DT=2DN=1⇒µãTÓëD1ÖØºÏ⇒SΪµÈÑüÌÝÐÎAPQD1£¬¹Ê¢ÜÕýÈ·£»
¶ÔÓڢݣ¬µ±0£¼CQ£¼
ʱ£¬Ôò0£¼DN£¼
⇒DT=2DN£¼1⇒SΪËıßÐÎAPQT£¬¹Ê¢ÝÕýÈ·£»
×ÛÉÏ£¬ÃüÌâÕýÈ·µÄÊÇ£º¢Ù¢Û¢Ü¢Ý£®
¹Ê´ð°¸Îª£º¢Ù¢Û¢Ü¢Ý£®
´Ëʱ£¬½ØÃæAPQRΪÁâÐΣ¬¸ÃÁâÐεÄÁ½Ìõ¶Ô½ÇÏß·Ö±ðΪ£ºAQ=
| 3 |
| 2 |
ËùÒÔS=
| 1 |
| 2 |
| 3 |
| 2 |
| ||
| 2 |
È¡ADµÄÖеãM£¬ÔÚDD1ÉÏÈ¡µãN£¬Ê¹µÃDN=CQ£¬ÔòMN¡ÎPQ£»×÷AT¡ÎMN£¬½»Ö±ÏßDD1ÓÚµãT£¬ÔòA¡¢P¡¢Q¡¢TËÄµã¹²Ãæ£»
¶ÔÓÚ¢Ú£¬µ±
| 3 |
| 4 |
| 3 |
| 4 |
| 3 |
| 2 |
¶ÔÓÚ¢Û£¬µ±CQ=
| 3 |
| 4 |
| 3 |
| 4 |
| 3 |
| 2 |
| 1 |
| 2 |
| 3 |
| 2 |
| 1 |
| 3 |
¶ÔÓڢܣ¬µ±CQ=
| 1 |
| 2 |
| 1 |
| 2 |
¶ÔÓڢݣ¬µ±0£¼CQ£¼
| 1 |
| 2 |
| 1 |
| 2 |
×ÛÉÏ£¬ÃüÌâÕýÈ·µÄÊÇ£º¢Ù¢Û¢Ü¢Ý£®
¹Ê´ð°¸Îª£º¢Ù¢Û¢Ü¢Ý£®
µãÆÀ£º±¾Ì⿼²é¶àÃæÌåÓë½ØÃæµÄÎÊÌ⣬ҪÇóѧÉúÕÆÎÕ×÷½ØÃæµÄ·½·¨£¬Òª³ä·ÖÀûÓÃÃæÃæÆ½ÐС¢ÏßÃæÆ½ÐеÄÐÔÖʶ¨ÀíÈ·¶¨½ØÃ棬ÔÙÀûÓÃÏàËÆÐÔÖʽøÐоßÌåµÄ¼ÆË㣬ÊôÓÚÄÑÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
ÒÑÖª¼¯ºÏP={x|x2£¼4}£¬ Q={x|
£¼4}£¬ÔòP¡ÉQ=£¨¡¡¡¡£©
| x |
| A¡¢{x|x£¼2} | B¡¢{x|0¡Üx£¼2} |
| C¡¢P | D¡¢Q |
ÏÂÁк¯ÊýÖмȲ»ÊÇÆæº¯ÊýÒ²²»ÊÇżº¯ÊýµÄÊÇ£¨¡¡¡¡£©
| A¡¢y=2|x| | ||||
B¡¢y=lg(
| ||||
| C¡¢y=2x-2-x | ||||
D¡¢
|
É輯ºÏA={1£¬3£¬a}£¬B={1£¬2}ÇÒA?B£¬ÔòaµÄֵΪ£¨¡¡¡¡£©
| A¡¢0 | B¡¢1 | C¡¢2 | D¡¢3 |
¶þÖ±Ïßmx+3y+3=0£¬2x+£¨m-1£©y+2=0ƽÐУ¬ÔòʵÊýmµÄֵΪ£¨¡¡¡¡£©
| A¡¢3»ò-2 | B¡¢-3»ò2 |
| C¡¢3 | D¡¢-2 |