题目内容

已知正四面体OABC的棱长为1.求:(1)
OA
OB
;(2)(
OA
+
OB
)•(
CA
+
CB
)(3)|
OA
+
OB
+
OC
|
考点:平面向量数量积的运算
专题:平面向量及应用
分析:(1)根据平面向量的数量积,结合正四面体OABC的棱长为1,求出
OA
OB
的值;
(2)根据平面向量的数量积,结合题意,进行计算即可;
(3)根据平面向量的数量积,计算模长|
OA
+
OB
+
OC
|即可.
解答: 解:(1)∵正四面体OABC的棱长为1,
OA
OB
=|
OA
|•|
OB
|cos60°=1×1×
1
2
=
1
2

(2)(
OA
+
OB
)•(
CA
+
CB

=
OA
CA
+
OA
CB
+
OB
CA
+
OB
CB

=1×1×cos60°+1×1×cos90°+1×1×cos90°+1×1×cos60°
=
1
2
+0+0+
1
2
=1;
(3)|
OA
+
OB
+
OC
|=
(
OA
+
OB
+
OC
)
2

=
OA
2
+
OB
2
+
OC
2
+2
OA
OB
+2
OA
OC
+2
OB
OC

=
1+1+1+2×
1
2
+2×
1
2
+2×
1
2

=
6
点评:本题考查了平面向量的数量积的应用问题,解题时应灵活应用数量积求值,求向量的模长,是基础题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网