题目内容
函数f(x)=
+
-1的定义域是( )
| 1-x |
| x+3 |
| A、[-3,1] | B、(-3,1) |
| C、R | D、∅ |
考点:函数的定义域及其求法
专题:函数的性质及应用
分析:由偶次根式内部的代数式大于等于0,列出不等式组,求解x的取值范围即可.
解答:
解:要使原函数有意义,则
,
所以-3≤x≤1.
所以原函数的定义域为:[-3,1].
故选:A.
|
所以-3≤x≤1.
所以原函数的定义域为:[-3,1].
故选:A.
点评:本题考查了函数的定义域及其求法,函数的定义域就是使函数解析式有意义的取值集合,是基础题.
练习册系列答案
相关题目
函数y=|x-1|的图象是( )
| A、 |
| B、 |
| C、 |
| D、 |
等差数列{an}的前n项和为Sn,a12,a14是x2-x-2=0的两个根,则S25等于( )
A、
| ||
| B、5 | ||
C、-
| ||
| D、-5 |
设f(x)=
,则f(f(
))=( )
|
| 10 |
| A、e | B、1 | C、2 | D、以上都不对 |
已知集合M={x||x|<2},N={x|-1≤x≤3},M∪N=( )
| A、{-1,2} |
| B、[-1,2) |
| C、{-2,3} |
| D、(-2,3] |