题目内容

求数列
22
22-1
42
42-1
62
62-1
82
82-1
的前n项和Sn
考点:数列的求和
专题:等差数列与等比数列
分析:Sn═(1+
1
22-1
)+(1+
1
42-1
)+(1+
1
62-1
)+…+(1+
1
(2n)2-1
)=n+
1
2
×[(1-
1
3
)+(
1
3
-
1
5
)+(
1
5
-
1
7
)+…+(
1
2n-1
-
1
2n+1
)],由此能求出结果.
解答: 解:Sn=
22
22-1
+
42
42-1
+
62
62-1
+
(2n)2
(2n)2-1

=(1+
1
22-1
)+(1+
1
42-1
)+(1+
1
62-1
)+…+(1+
1
(2n)2-1

=n+
1
2
×[
2
2-1
×(2+1)+
2
4-1
×(4+1)+
2
6-1
×(6+1)+…+
2
2n-1
×(2n+1)]
=n+
1
2
×[(3-1)×3+
5-3
3
×5+
7-5
5
×7+…+
(2n+1)-(2n-1)
2n-1
×(2n+1)]
=n+
1
2
×[(1-
1
3
)+(
1
3
-
1
5
)+(
1
5
-
1
7
)+…+(
1
2n-1
-
1
2n+1
)]
=n+
1
2
×(1-
1
2n+1

=n+
n
2n+1
点评:本题考查数列前n项和的求法,解题时要认真审题,注意等价转化思想的合理运用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网