题目内容
5.设O为△ABC的外心,且$\overrightarrow{OA}$$+\overrightarrow{OB}$+$\sqrt{3}$$\overrightarrow{OC}$=$\overrightarrow{0}$,则△ABC的内角C=$\frac{π}{6}$.分析 设$<\overrightarrow{OA},\overrightarrow{OB}>$=θ,△ABC的外接圆的半径为R.由于$\overrightarrow{OA}$$+\overrightarrow{OB}$+$\sqrt{3}$$\overrightarrow{OC}$=$\overrightarrow{0}$,变形$\overrightarrow{OA}$$+\overrightarrow{OB}$=-$\sqrt{3}$$\overrightarrow{OC}$,作数量积运算可得:${\overrightarrow{OA}}^{2}+{\overrightarrow{OB}}^{2}$+2$\overrightarrow{OA}•\overrightarrow{OB}$=3${\overrightarrow{OC}}^{2}$,化为2+2cosθ=3,即可得出.
解答 解:设$<\overrightarrow{OA},\overrightarrow{OB}>$=θ,△ABC的外接圆的半径为R.
∵$\overrightarrow{OA}$$+\overrightarrow{OB}$+$\sqrt{3}$$\overrightarrow{OC}$=$\overrightarrow{0}$,
∴$\overrightarrow{OA}$$+\overrightarrow{OB}$=-$\sqrt{3}$$\overrightarrow{OC}$,
∴${\overrightarrow{OA}}^{2}+{\overrightarrow{OB}}^{2}$+2$\overrightarrow{OA}•\overrightarrow{OB}$=3${\overrightarrow{OC}}^{2}$,
化为2+2cosθ=3,
∴cosθ=$\frac{1}{2}$,
∴θ=$\frac{π}{3}$.
∴C=$\frac{π}{6}$.
故答案为:$\frac{π}{6}$.
点评 本题考查了向量数量积运算性质、三角形外接圆的性质,考查了推理能力与计算能力,属于中档题.
| A. | $\frac{1}{2}$ | B. | $\frac{\sqrt{2}}{2}$ | C. | $\frac{\sqrt{3}}{2}$ | D. | $\frac{\sqrt{3}}{4}$ |
| A. | -1<k<$\frac{\sqrt{2}}{2}$ | B. | -$\frac{\sqrt{2}}{2}$<k<$\frac{\sqrt{2}}{2}$ | C. | -$\frac{\sqrt{2}}{2}$<k<1 | D. | -1<k<1 |