题目内容

已知P是双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)的右支上一点,F1,F2分别为双曲线的左、右焦点,双曲线的离心率为e,下列命题正确的是(  )
A、双曲线的焦点到渐近线的距离为a
B、若|PF1|=e|PF2|,则e的最大值为
3
C、△PF1F2的内切圆的圆心的横坐标为b
D、若∠F1PF2的外角平分线交x轴与M,则
|MF1|
|PF1|
=e.
考点:双曲线的简单性质
专题:综合题,圆锥曲线的定义、性质与方程
分析:A:双曲线的焦点(c,0)到渐近线bx+ay=0的距离为
bc
b2+a2
=b;
B:若|PF1|=e|PF2|,则|PF1|-|PF2|=(e-1)|PF2|=2a,2a≥(e-1)(c-a),可得1<e≤
2
+1;
C:根据题意,利用切线长定理,再利用双曲线的定义,把|PF1|-|PF2|=2a,转化为|HF1|-|HF2|=2a,从而求得点H的横坐标;
D:利用三角形外角平分线的性质,结合双曲线的定义,可得结论.
解答: 解:双曲线的焦点(c,0)到渐近线bx+ay=0的距离为
bc
b2+a2
=b,故A不正确;
若|PF1|=e|PF2|,则|PF1|-|PF2|=(e-1)|PF2|=2a,
∴2a≥(e-1)(c-a),∴2≥(e-1)2,∴1<e≤
2
+1,∴e的最大值为
2
+1,故B不正确;
如图所示:F1(-c,0)、F2(c,0),设内切圆与x轴的切点是点H,PF1、PF2分 与内切圆的切点分别为M、N,
∵由双曲线的定义可得|PF1|-|PF2|=2a,由圆的切线长定理知,|PM|=|PN|,故|MF1|-|NF2 |=2a,
即|HF1|-|HF2|=2a,设内切圆的圆心横坐标为x,则点H的横坐标为x,
故(x+c)-(c-x)=2a,∴x=a.故C不正确;
利用三角形外角平分线的性质,结合双曲线的定义,可知结论正确.
故选:D
点评:本题考查双曲线的定义、切线长定理,体现了转化的数学思想以及数形结合的数学思想.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网