题目内容

9.已知函数f(x)=xex-a(x-1)(a∈R)
(1)若函数f(x)在x=0处有极值,求a的值及f(x)的单调区间
(2)若存在实数x0∈(0,$\frac{1}{2}$),使得f(x0)<0,求实数a的取值范围.

分析 (1)求出函数的导数,求出a的值,解关于导函数的不等式,求出函数的单调区间即可;
(2)问题转化为a<$\frac{{xe}^{x}}{x-1}$在x∈(0,$\frac{1}{2}$)上有解,设h(x)=$\frac{{xe}^{x}}{x-1}$,x∈(0,$\frac{1}{2}$),根据函数的单调性求出a的范围即可.

解答 解:(1)f′(x)=(x+1)ex-a,
由f′(0)=0,解得:a=1,
故f′(x)=(x+1)ex-1,
令f′(x)>0,解得:x>0,令f′(x)<0,解得:x<0,
故f(x)在(-∞,0)递减,在(0,+∞)递增;
(2)若f(x)<0在x∈(0,$\frac{1}{2}$)上有解,
即xex<a(x-1),a<$\frac{{xe}^{x}}{x-1}$在x∈(0,$\frac{1}{2}$)上有解,
设h(x)=$\frac{{xe}^{x}}{x-1}$,x∈(0,$\frac{1}{2}$),
则h′(x)=$\frac{{e}^{x}{(x}^{2}-x-1)}{{(x-1)}^{2}}$<0,
故h(x)在(0,$\frac{1}{2}$)递减,
h(x)在(0,$\frac{1}{2}$)的值域是(-$\sqrt{e}$,0),
故a<h(0)=0.

点评 本题考查了函数的单调性、最值问题,考查导数的应用以及函数恒成立问题,考查转化思想,是一道中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网