题目内容
9.已知数列{an}前n项和Sn=$\frac{3}{2}$n2-$\frac{123}{2}$n,n∈N*(1)求数列{an}的通项公式an;
(2)求Tn=|a1|+|a2|+…+|an|的值.
分析 (1)利用递推关系即可得出.
(2)对n分类讨论,利用等差数列的求和公式即可得出.
解答 解:(1)当n=1时,a1=S1=-60
当n≥2时,an=Sn-Sn-1=3n-63
∴${a_n}=3n-63(n∈{N^*})$…(5分)
(2)$|{a_n}|=|{3n-63}|=\left\{{\begin{array}{l}{-{a_n},(1≤n≤20)}\\{{a_n},(n≥21)}\end{array}}\right.$…(6分)
当1≤n≤20时,${T_n}=|{a_1}|+|{a_2}|+…+|{a_n}|=-{a_1}-{a_2}-…-{a_n}=-{S_n}=\frac{123}{2}n-\frac{3}{2}{n^2}$…(8分)
当n≥21时,Tn=-a1-a2-…-a20+a21+…+an
=Sn-2S20
=$\frac{3}{2}{n}^{2}$-$\frac{123}{2}$n+1260.…(10分)
点评 本题考查了等差数列的通项公式与求和公式、数列递推关系、分类讨论方法,考查了推理能力与计算能力,属于中档题.
练习册系列答案
相关题目
19.命题“?x0∈R,$\frac{2}{x_0}$+lnx0≥0”的否定是( )
| A. | $?{x}∈R,\frac{2}{x}+ln{x}<0$ | B. | $?{x}∈R,\frac{2}{x}+ln{x}≤0$ | ||
| C. | $?{x_0}∈R,\frac{2}{x_0}+ln{x_0}<0$ | D. | $?{x_0}∈R,\frac{2}{x_0}+ln{x_0}≤0$ |
14.已知f(x)是定义在R上的偶函数,且在(-∞,0)上单调递增,若实数a满足f(2|a-1|)>f(4),则a的取值范围是( )
| A. | (-∞,-1) | B. | (-∞,1)∪(3,+∞) | C. | (-1,3) | D. | (3,+∞) |
1.设P是双曲线$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{2}$=1上的动点,若P到两条渐近线的距离分别为d1、d2,则d1•d2=( )
| A. | 3$\sqrt{2}$ | B. | $\frac{4}{3}$ | C. | $\frac{3}{4}$ | D. | 2$\sqrt{3}$ |
19.已知i是虚数单位,复数$\frac{z}{2-3i}$对应于复平面内一点(0,1),则|z|=( )
| A. | $\sqrt{13}$ | B. | 4 | C. | 5 | D. | $4\sqrt{2}$ |