题目内容
数列{an}满足a1=1,an+1=
(n∈N*).
(1)求证{
}是等差数列;(要指出首项与公差);
(2)求数列{an}的通项公式;
(3)若Tn=a1a2+a2a3+…+anan+1,求证:Tn<
.
| an |
| 2an+1 |
(1)求证{
| 1 |
| an |
(2)求数列{an}的通项公式;
(3)若Tn=a1a2+a2a3+…+anan+1,求证:Tn<
| 1 |
| 2 |
考点:数列与不等式的综合
专题:等差数列与等比数列
分析:(1)由an+1=
,得:
=
,由此能证明数列{
}是以首项
=1,公差d=2的等差数列.
(2)由(1)得
=
+(n-1)d=2n-1,由此能求出数列{an}的通项公式.
(3)由anan+1=
=
(
-
),利用裂项求和法能证明Tn<
.
| an |
| 2an+1 |
| 1 |
| an+1 |
| 2an+1 |
| an |
| 1 |
| an |
| 1 |
| a1 |
(2)由(1)得
| 1 |
| an |
| 1 |
| a1 |
(3)由anan+1=
| 1 |
| (2n-1)(2n+1) |
| 1 |
| 2 |
| 1 |
| 2n-1 |
| 1 |
| 2n+1 |
| 1 |
| 2 |
解答:
(1)解:由an+1=
,得:
=
∴
=
+2,
∴
-
=2,又a1=1,∴
=1,
∴数列{
}是以首项
=1,公差d=2的等差数列.
(2)解:由(1)得:
=
+(n-1)d=2n-1
∴an=
.
(3)证明:∵anan+1=
=
(
-
),
∴Tn=a1a2+a2a3+…+anan+1=
(
-
+
-
+…+
-
)
=
[(1-
)+(
-
)+(
-
)+…+(
-
)+(
-
)]
=
(1-
)<
∴Tn<
.
| an |
| 2an+1 |
| 1 |
| an+1 |
| 2an+1 |
| an |
∴
| 1 |
| an+1 |
| 1 |
| an |
∴
| 1 |
| an+1 |
| 1 |
| an |
| 1 |
| a1 |
∴数列{
| 1 |
| an |
| 1 |
| a1 |
(2)解:由(1)得:
| 1 |
| an |
| 1 |
| a1 |
∴an=
| 1 |
| 2n-1 |
(3)证明:∵anan+1=
| 1 |
| (2n-1)(2n+1) |
| 1 |
| 2 |
| 1 |
| 2n-1 |
| 1 |
| 2n+1 |
∴Tn=a1a2+a2a3+…+anan+1=
| 1 |
| 2 |
| 1 |
| 1 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 5 |
| 1 |
| 2n-1 |
| 1 |
| 2n+1 |
=
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 5 |
| 1 |
| 5 |
| 1 |
| 7 |
| 1 |
| 2n-3 |
| 1 |
| 2n-1 |
| 1 |
| 2n-1 |
| 1 |
| 2n+1 |
=
| 1 |
| 2 |
| 1 |
| 2n+1 |
| 1 |
| 2 |
∴Tn<
| 1 |
| 2 |
点评:本题考查等差数列的证明,考查数列的通项公式的求法,考查不等式的证明,解题时要认真审题,注意裂项求和法的合理运用.
练习册系列答案
相关题目