题目内容

数列{an}满足a1=1,an+1=
an
2an+1
(n∈N*).
(1)求证{
1
an
}
是等差数列;(要指出首项与公差);
(2)求数列{an}的通项公式;
(3)若Tn=a1a2+a2a3+…+anan+1,求证:Tn
1
2
考点:数列与不等式的综合
专题:等差数列与等比数列
分析:(1)由an+1=
an
2an+1
,得:
1
an+1
=
2an+1
an
,由此能证明数列{
1
an
}
是以首项
1
a1
=1
,公差d=2的等差数列.
(2)由(1)得
1
an
=
1
a1
+(n-1)d=2n-1
,由此能求出数列{an}的通项公式.
(3)由anan+1=
1
(2n-1)(2n+1)
=
1
2
(
1
2n-1
-
1
2n+1
)
,利用裂项求和法能证明Tn
1
2
解答: (1)解:由an+1=
an
2an+1
,得:
1
an+1
=
2an+1
an

1
an+1
=
1
an
+2

1
an+1
-
1
an
=2
,又a1=1,∴
1
a1
=1,
∴数列{
1
an
}
是以首项
1
a1
=1
,公差d=2的等差数列.
(2)解:由(1)得:
1
an
=
1
a1
+(n-1)d=2n-1

an=
1
2n-1

(3)证明:∵anan+1=
1
(2n-1)(2n+1)
=
1
2
(
1
2n-1
-
1
2n+1
)

∴Tn=a1a2+a2a3+…+anan+1=
1
2
(
1
1
-
1
3
+
1
3
-
1
5
+…+
1
2n-1
-
1
2n+1
)

=
1
2
[(1-
1
3
)+(
1
3
-
1
5
)+(
1
5
-
1
7
)+…+(
1
2n-3
-
1
2n-1
)+(
1
2n-1
-
1
2n+1
)]

=
1
2
(1-
1
2n+1
)<
1
2

Tn
1
2
点评:本题考查等差数列的证明,考查数列的通项公式的求法,考查不等式的证明,解题时要认真审题,注意裂项求和法的合理运用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网