题目内容
18.在2,0,1,7这组数据中,随机取出三个不同的数,则数字2是取出的三个不同数的中位数的概率为( )| A. | $\frac{3}{4}$ | B. | $\frac{5}{8}$ | C. | $\frac{1}{2}$ | D. | $\frac{1}{4}$ |
分析 基本事件总数n=${C}_{4}^{3}$=4,再利用列举法求出数字2是取出的三个不同数的中位数包含的基本事件的个数,由此能求出数字2是取出的三个不同数的中位数的概率.
解答 解:在2,0,1,7这组数据中,随机取出三个不同的数,
基本事件总数n=${C}_{4}^{3}$=4,
数字2是取出的三个不同数的中位数包含的基本事件有:
(1,2,7),(0,2,7),共有2个,
∴数字2是取出的三个不同数的中位数的概率为:
p=$\frac{2}{4}$=$\frac{1}{2}$.
故选:C.
点评 本题考查概率的求法,是基础题,解题时要认真审题,注意列举法的合理运用.
练习册系列答案
相关题目
8.已知某产品的广告费用x与销售额y之间有如下的对应数据:
(1)y与x是否具有线性相关关系?若有,求出y对x的线性回归方程;
(2)据此估计广告费用为11万元时销售额的值.
(参考公式:$\stackrel{∧}{b}$=$\frac{{{\sum_{i=1}^{n}x}_{i}y}_{i}-n\overline{x}\overline{y}}{{\sum_{i=1}^{n}x}_{i}^{2}-{n\overline{x}}^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}{b}$$\overline{x}$)
| x(万元) | 2 | 4 | 5 | 6 | 8 |
| y(万元) | 30 | 40 | 60 | 50 | 70 |
(2)据此估计广告费用为11万元时销售额的值.
(参考公式:$\stackrel{∧}{b}$=$\frac{{{\sum_{i=1}^{n}x}_{i}y}_{i}-n\overline{x}\overline{y}}{{\sum_{i=1}^{n}x}_{i}^{2}-{n\overline{x}}^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}{b}$$\overline{x}$)
10.函数f(x)=$\sqrt{3}$cos2$\frac{x}{2}$-$\frac{1}{2}$sinx-$\frac{\sqrt{3}}{2}$(x∈[0,π])的单调递增区间为( )
| A. | [0,$\frac{5π}{6}$] | B. | [0,$\frac{2π}{3}$] | C. | [$\frac{5π}{6}$,π] | D. | [$\frac{2π}{3}$,π] |