题目内容

10.函数f(x)=$\sqrt{3}$cos2$\frac{x}{2}$-$\frac{1}{2}$sinx-$\frac{\sqrt{3}}{2}$(x∈[0,π])的单调递增区间为(  )
A.[0,$\frac{5π}{6}$]B.[0,$\frac{2π}{3}$]C.[$\frac{5π}{6}$,π]D.[$\frac{2π}{3}$,π]

分析 利用二倍角和辅助角公式基本公式将函数化为y=Asin(ωx+φ)的形式,将内层函数看作整体,放到正弦函数的增区间上,解不等式得函数的单调递增区间;可得x∈[0,π]的单调递增区间.

解答 解:函数f(x)=$\sqrt{3}$cos2$\frac{x}{2}$-$\frac{1}{2}$sinx-$\frac{\sqrt{3}}{2}$(x∈[0,π])
化简可得:f(x)=$\frac{\sqrt{3}}{2}$+$\frac{\sqrt{3}}{2}$cosx-$\frac{1}{2}$sinx-$\frac{\sqrt{3}}{2}$=cos(x+$\frac{π}{6}$)
由-π+2kπ≤x+$\frac{π}{6}$≤2kπ.
可得:$-\frac{7π}{6}+2kπ≤$x≤$2kπ-\frac{π}{6}$,k∈Z.
∵x∈[0,π],
当k=1时,可得增区间为[$\frac{5π}{6}$,π].
故选C.

点评 本题主要考查三角函数的图象和性质,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网