题目内容

某工厂接到一标识制作订单,标识如图所示,分为两部分,“T型”部分为宽为10cm 的两个矩形相接而成,圆面部分的圆周是A,C,D,F的外接圆.要求如下:①“T型”部分的面积不得小于800cm2;②两矩形的长均大于外接圆半径.为了节约成本,设计时应尽量减小圆面的面积.此工厂的设计师,凭直觉认为当“T型”部分的面积取800cm2且两矩形的长相等时,成本是最低的.你同意他的观点吗?试通过计算,说说你的理由.
考点:基本不等式在最值问题中的应用
专题:计算题,应用题,不等式的解法及应用
分析:设一个矩形长AF=x(dm),则另一矩形长为8-x(dm).设圆半径为r(dm),则
r2-
1
4
x2
-1+
r2-
1
4
=8-x,化简整理,令9-x=t,得到2
r2-
1
4
=
5
4
(t+
16
t
)-
9
2
,再由基本不等式即可得到最小值,注意等号成立的条件.
解答: 解:设一个矩形长AF=x(dm),则另一矩形长为8-x(dm).
设圆半径为r(dm),则
r2-
1
4
x2
-1+
r2-
1
4
=8-x,
r2-
1
4
x2=(9-x)2+r2-
1
4
-2(9-x)
r2-
1
4

即2(9-x)
r2-
1
4
=(9-x)2+
1
4
x2-
1
4

令9-x=t,得2t
r2-
1
4
=t2+
1
4
(9-t)2-
1
4
=
5
4
t2+20-
9
2
t,
得2
r2-
1
4
=
5
4
(t+
16
t
)-
9
2
5
4
×2
t•
16
t
-
9
2
=
11
2

即r2
121
16
+
1
4

即有r
5
5
4

此时t=4即有x=5,y=3(单位:dm).
则不同意他的观点.
点评:本题考查基本不等式在最值问题中的运用,根据题意得到等式,通过换元化简整理是解题的关键,考查运算能能力,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网