题目内容

观察以下等式:
C51+C35=23-2,C91+C95+C99=27+23
C131+C135+C139+C1311=211-25
C171+C175+C179+1713+C1717=215+27
由此推测:C20131+C20135+C2013+…+C20132013=
 
考点:归纳推理
专题:推理和证明
分析:通过观察归纳出:第n个等式的右边由二项构成,第一项为:24n-1,第二项为(-1)n•22n-1,进而根据4n+1=2013,n=503,得到答案.
解答: 解:由已知中等式:
C51+C35=23-2,C91+C95+C99=27+23
C131+C135+C139+C1311=211-25
C171+C175+C179+1713+C1717=215+27
由此推测:第n个等式的右边由二项构成,第一项为:24n-1,第二项为(-1)n•22n-1
由4n+1=2013,n=503,可得4n-1=2011,2n-1=1005
C20131+C20135+C2013+…+C20132013=22011-21005
故答案为:22011-21005
点评:归纳推理的一般步骤是:(1)通过观察个别情况发现某些相同性质;(2)从已知的相同性质中推出一个明确表达的一般性命题(猜想).
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网