题目内容

如图,过圆E外一点A作一条直线与圆E交于B,C两点,且AB=
1
3
AC
,作直线AF与圆E相切于点F,连结EF交BC于点D,已知圆E的半径为2,∠EBC=30°
(1)求AF的长;
(2)求证:AD=3ED.
考点:与圆有关的比例线段
专题:直线与圆
分析:(1)延长BE交圆E于点M,连结CM,则∠BCM=90°,由已知条件求出AB,AC,再由切割线定理能求出AF.
(2)过E作EH⊥BC于H,得到EDH∽△ADF,由此入手能够证明AD=3ED.
解答: (1)解:延长BE交圆E于点M,连结CM,则∠BCM=90°,
∵BM=2BE=4,∠EBC=30°,∴BC=2
3

又∵AB=
1
3
AC
,∴AB=
1
2
BC=
3
,∴AC=3
3

根据切割线定理得AF2=AB•AC=
3
×3
3
=9
,即AF=3
(2)证明:过E作EH⊥BC于H,
∵∠EOH=∠ADF,∠EHD=∠AFD,
∴△EDH∽△ADF,
ED
AD
=
EH
AF

又由题意知CH=
1
2
BC=
3
,EB=2,
∴EH=1,∴
ED
AD
=
1
3

∴AD=3ED.
点评:本题考查与圆有关的线段的求法,考查两条线段间数量关系的证明,是中档题,解题时要注意切割线定理的合理运用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网