题目内容

设函数f(x)=
3
cos2ωx+sinωxcosωx+a(其中ω>0,a∈R),且f(x)的最小正周期为π.
(1)求ω的值;
(2)如果f(x)在区间[-
π
6
12
]上的最小值为
3
2
,求a的值.
考点:三角函数中的恒等变换应用,三角函数的最值
专题:三角函数的图像与性质
分析:(1)利用二倍角公式和两角和公式对函数解析式化简,利用函数的周期公式求得ω的值.
(2)先根据f(x)的解析式求得函数的最小值的表达式,进而求得a.
解答: 解:(1)f(x)=
3
×
1+cos2ωx
2
+
1
2
sin2ωx+a=
1
2
sin2ωx+
3
2
cos2ωx+
3
2
+a
=sin(2ωx+
π
3
)+
3
2
+a
由题意知,ω=1
(2)由(1)知,f(x)=sin(2x+
π
3
)+
3
2
+a,
∵-
π
6
≤x≤
12

∴0≤2x+
π
3
6

∴-
1
2
≤sin(2x+
π
3
)≤1,
∴f(x)的最小值为:-
1
2
+
3
2
+a=
3
2

∴a=
1
2
点评:本题主要考查了三角函数恒等变换的应用,三角函数的图象与性质.综合考查了学生对三角函数问题的把握.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网