ÌâÄ¿ÄÚÈÝ
20£®ÒÑÖªÇúÏßC1µÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=1+cos¦È}\\{y=sin¦È}\end{array}\right.$£¨¦ÈΪ²ÎÊý£©£¬ÇúÏßC2µÄ¼«×ø±ê·½³ÌΪ¦Ñ=-2cos¦È+4sin¦È£®£¨¢ñ£©½«ÇúÏßC1µÄ²ÎÊý·½³Ì»¯ÎªÆÕͨ·½³Ì£¬ÇúÏßC2µÄ¼«×ø±ê·½³Ì»¯ÎªÖ±½Ç×ø±ê·½³Ì£®
£¨¢ò£©ÇúÏßC1£¬C2ÊÇ·ñÏཻ£¬Èô²»Ïཻ£¬Çë˵Ã÷ÀíÓÉ£»Èô½»ÓÚÒ»µã£¬ÔòÇó³ö´ËµãµÄ¼«×ø±ê£»Èô½»ÓÚÁ½µã£¬ÔòÇó³ö¹ýÁ½µãµÄÖ±Ïߵļ«×ø±ê·½³Ì£®
·ÖÎö £¨¢ñ£©ÇúÏßC1µÄ²ÎÊý·½³ÌÏûÈ¥²ÎÊý£¬ÄÜÇó³öÇúÏßC1µÄÆÕͨ·½³Ì£¬ÓÉÇúÏßC2µÄ¼«×ø±ê·½³ÌÄÜÇó³öÇúÏßC2µÄÖ±½Ç×ø±ê·½³Ì£®
£¨¢ò£©Çó³öÇúÏßC1¡¢C2µÄ½»ÏßΪ4x-4y=0£¬¼´x=y£¬ÓÉ´ËÄÜʾ³ö¹ýÁ½µãµÄÖ±Ïߵļ«×ø±ê·½³Ì£®
½â´ð ½â£º£¨¢ñ£©¡ßÇúÏßC1µÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=1+cos¦È}\\{y=sin¦È}\end{array}\right.$£¨¦ÈΪ²ÎÊý£©£¬
¡àÇúÏßC1µÄÆÕͨ·½³ÌΪ£¨x-1£©2+y2=1£¬
¡ßÇúÏßC2µÄ¼«×ø±ê·½³ÌΪ¦Ñ=-2cos¦È+4sin¦È£¬
¡àÇúÏßC2µÄÖ±½Ç×ø±ê·½³ÌΪx2+y2+2x-4y=0£®
£¨¢ò£©ÇúÏßC1ÊÇÒÔC1£¨1£¬0£©ÎªÔ²ÐÄ£¬ÒÔr1=1Ϊ°ë¾¶µÄÔ²£¬
ÇúÏßC2ÊÇÒÔC2£¨-1£¬2£©ÎªÔ²ÐÄ£¬ÒÔ${r}_{2}=\frac{1}{2}\sqrt{4+16}$=$\sqrt{5}$Ϊ°ë¾¶µÄÔ²£¬
|C1C2|=$\sqrt{4+4}$=2$\sqrt{2}$¡Ê£¨|r1-r2|£¬r1+r2£©£¬
¡àÇúÏßC1£¬C2½»ÓÚÁ½µã£¬
¡ßÇúÏßC1µÄÆÕͨ·½³ÌΪ£¨x-1£©2+y2=1£¬¼´x2+y2-2x=0£¬
ÇúÏßC2µÄÖ±½Ç×ø±ê·½³ÌΪx2+y2+2x-4y=0£®
¡àÇúÏßC1¡¢C2µÄ½»ÏßΪ4x-4y=0£¬¼´x=y£¬
¡à¹ýÁ½µãµÄÖ±Ïߵļ«×ø±ê·½³ÌΪtan¦È=1£¬¼´$¦È=\frac{¦Ð}{4}$»ò¦È=$\frac{5¦Ð}{4}$£®
µãÆÀ ±¾Ì⿼²éÇúÏßµÄÖ±½Ç×ø±ê·½³ÌµÄÇ󷨣¬¿¼²éÁ½Ô²½»Ïߵļ«×ø±ê·½³ÌµÄÇ󷨣¬¿¼²é¼«×ø±ê·½³Ì¡¢Ö±½Ç×ø±ê·½³Ì¡¢²ÎÊý·½³ÌµÄ»¥»¯£¬¿¼²éÍÆÀíÂÛÖ¤ÄÜÁ¦¡¢ÔËËãÇó½âÄÜÁ¦£¬¿¼²é»¯¹éÓëת»¯Ë¼Ïë¡¢º¯ÊýÓë·½³Ì˼Ï룬ÊÇÖеµÌ⣮
| A£® | $\hat y=2.3x-0.7$ | B£® | $\hat y=2.3x+0.7$ | C£® | $\hat y=0.7x-2.3$ | D£® | $\hat y=0.7x+2.3$ |
| A£® | £¨0£¬1£© | B£® | £¨1£¬0£© | C£® | £¨1£¬-1£© | D£® | £¨1£¬3£© |
| A£® | 4 | B£® | $\frac{4}{3}$ | C£® | $\frac{8}{3}$ | D£® | $\frac{1}{3}$ |