ÌâÄ¿ÄÚÈÝ

20£®ÒÑÖªÇúÏßC1µÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=1+cos¦È}\\{y=sin¦È}\end{array}\right.$£¨¦ÈΪ²ÎÊý£©£¬ÇúÏßC2µÄ¼«×ø±ê·½³ÌΪ¦Ñ=-2cos¦È+4sin¦È£®
£¨¢ñ£©½«ÇúÏßC1µÄ²ÎÊý·½³Ì»¯ÎªÆÕͨ·½³Ì£¬ÇúÏßC2µÄ¼«×ø±ê·½³Ì»¯ÎªÖ±½Ç×ø±ê·½³Ì£®
£¨¢ò£©ÇúÏßC1£¬C2ÊÇ·ñÏཻ£¬Èô²»Ïཻ£¬Çë˵Ã÷ÀíÓÉ£»Èô½»ÓÚÒ»µã£¬ÔòÇó³ö´ËµãµÄ¼«×ø±ê£»Èô½»ÓÚÁ½µã£¬ÔòÇó³ö¹ýÁ½µãµÄÖ±Ïߵļ«×ø±ê·½³Ì£®

·ÖÎö £¨¢ñ£©ÇúÏßC1µÄ²ÎÊý·½³ÌÏûÈ¥²ÎÊý£¬ÄÜÇó³öÇúÏßC1µÄÆÕͨ·½³Ì£¬ÓÉÇúÏßC2µÄ¼«×ø±ê·½³ÌÄÜÇó³öÇúÏßC2µÄÖ±½Ç×ø±ê·½³Ì£®
£¨¢ò£©Çó³öÇúÏßC1¡¢C2µÄ½»ÏßΪ4x-4y=0£¬¼´x=y£¬ÓÉ´ËÄÜʾ³ö¹ýÁ½µãµÄÖ±Ïߵļ«×ø±ê·½³Ì£®

½â´ð ½â£º£¨¢ñ£©¡ßÇúÏßC1µÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=1+cos¦È}\\{y=sin¦È}\end{array}\right.$£¨¦ÈΪ²ÎÊý£©£¬
¡àÇúÏßC1µÄÆÕͨ·½³ÌΪ£¨x-1£©2+y2=1£¬
¡ßÇúÏßC2µÄ¼«×ø±ê·½³ÌΪ¦Ñ=-2cos¦È+4sin¦È£¬
¡àÇúÏßC2µÄÖ±½Ç×ø±ê·½³ÌΪx2+y2+2x-4y=0£®
£¨¢ò£©ÇúÏßC1ÊÇÒÔC1£¨1£¬0£©ÎªÔ²ÐÄ£¬ÒÔr1=1Ϊ°ë¾¶µÄÔ²£¬
ÇúÏßC2ÊÇÒÔC2£¨-1£¬2£©ÎªÔ²ÐÄ£¬ÒÔ${r}_{2}=\frac{1}{2}\sqrt{4+16}$=$\sqrt{5}$Ϊ°ë¾¶µÄÔ²£¬
|C1C2|=$\sqrt{4+4}$=2$\sqrt{2}$¡Ê£¨|r1-r2|£¬r1+r2£©£¬
¡àÇúÏßC1£¬C2½»ÓÚÁ½µã£¬
¡ßÇúÏßC1µÄÆÕͨ·½³ÌΪ£¨x-1£©2+y2=1£¬¼´x2+y2-2x=0£¬
ÇúÏßC2µÄÖ±½Ç×ø±ê·½³ÌΪx2+y2+2x-4y=0£®
¡àÇúÏßC1¡¢C2µÄ½»ÏßΪ4x-4y=0£¬¼´x=y£¬
¡à¹ýÁ½µãµÄÖ±Ïߵļ«×ø±ê·½³ÌΪtan¦È=1£¬¼´$¦È=\frac{¦Ð}{4}$»ò¦È=$\frac{5¦Ð}{4}$£®

µãÆÀ ±¾Ì⿼²éÇúÏßµÄÖ±½Ç×ø±ê·½³ÌµÄÇ󷨣¬¿¼²éÁ½Ô²½»Ïߵļ«×ø±ê·½³ÌµÄÇ󷨣¬¿¼²é¼«×ø±ê·½³Ì¡¢Ö±½Ç×ø±ê·½³Ì¡¢²ÎÊý·½³ÌµÄ»¥»¯£¬¿¼²éÍÆÀíÂÛÖ¤ÄÜÁ¦¡¢ÔËËãÇó½âÄÜÁ¦£¬¿¼²é»¯¹éÓëת»¯Ë¼Ïë¡¢º¯ÊýÓë·½³Ì˼Ï룬ÊÇÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø