题目内容
已知集合A={x|-1<2x+1<5},集合B={x|y=lg(1-x2)},则( )
| A、A⊆B | B、B⊆A |
| C、A∪B=B | D、A∩B=A |
考点:集合的包含关系判断及应用
专题:集合
分析:解不等式求出集合A,B,进而根据集合包含关系的定义,得到答案.
解答:
解:∵集合A={x|-1<2x+1<5}=(-1,2),
集合B={x|y=lg(1-x2)}={x|1-x2>0}=(-1,1),
∴B⊆A
故选:B
集合B={x|y=lg(1-x2)}={x|1-x2>0}=(-1,1),
∴B⊆A
故选:B
点评:本题考查的知识点是集合包含关系的判断及应用,其中熟练掌握子集的定义是解答的关键.
练习册系列答案
相关题目
已知i为虚数单位,则复数
等于( )
| 2-i |
| 3+i |
A、
| ||||
B、-
| ||||
C、
| ||||
D、-
|
已知圆C:x2+y2-4x=0,直线l:x+my-3=0,则( )
| A、l与C相交 |
| B、l与C相切 |
| C、l与C相离 |
| D、以上三个选项均有可能 |
命题“存在x∈R,使得x2+sinx-1≥0”的否定为( )
| A、对任意的x∈R,x2+sinx-1≥0 |
| B、不存在x∈R,使得x2+sinx-1≤0 |
| C、存在x∈R,使得x2+sinx-1<0 |
| D、对任意的x∈R,使得x2+sinx-1<0 |
下列命题中,真命题的是( )
| A、?x∈R,x2>0 |
| B、?x∈R,-1<sinx<1 |
| C、?x0∈R,2x0<0 |
| D、?x0∈R,tanx0=2 |
已知函数f(x)=sin(2x+
),将其图象向右平移
,则所得图象的一条对称轴是( )
| π |
| 6 |
| π |
| 6 |
A、x=
| ||
B、x=
| ||
C、x=
| ||
D、x=
|
某几何体的三视图如图所示,则该几何体的体积为( )

A、4+4
| ||||
B、
| ||||
| C、12 | ||||
| D、8 |