题目内容

2.函数f(x)=$\left\{\begin{array}{l}{\sqrt{4-{x}^{2}}-2,(-2≤x<0)}\\{|{x}^{2}-x|,(x≤x≤2)}\end{array}\right.$的图象与x轴及x=±2所围成的封闭图形的面积为(  )
A.5-πB.1+πC.π-3D.1-π

分析 首先画出图形,利用定积分表示封闭图形的面积,然后计算即可.

解答 解:函数f(x)=$\left\{\begin{array}{l}{\sqrt{4-{x}^{2}}-2,(-2≤x<0)}\\{|{x}^{2}-x|,(x≤x≤2)}\end{array}\right.$的图象与x轴及x=±2所围成的封闭图形如图,
其面积S=${∫}_{-2}^{0}(\sqrt{4-{x}^{2}}-2)dx{+∫}_{0}^{1}(x-{x}^{2})dx{+∫}_{1}^{2}({x}^{2}-x)dx\\;\\;\$
=$4-\frac{1}{4}π•{2}^{2}+(\frac{1}{2}{x}^{2}-\frac{1}{3}{x}^{3}){|}_{0}^{1}+(\frac{1}{3}{x}^{3}-\frac{1}{2}{x}^{2}){|}_{1}^{2}\\;=5-π\\;\\;\\;\$
=5-π.
故选:A.

点评 本题考查了利用定积分求曲边梯形的面积;关键是利用定积分表示出封闭图形的面积,然后计算.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网