ÌâÄ¿ÄÚÈÝ
ÒÑÖªº¯Êýf£¨x£©=ex-x£¨eΪ×ÔÈ»¶ÔÊýµÄµ×Êý£©£®
£¨1£©Çóf£¨x£©µÄ×îСֵ£»
£¨2£©Éè²»µÈʽf£¨x£©£¾axµÄ½â¼¯ÎªP£¬ÈôM={x|
¡Üx¡Ü2}£¬ÇÒM¡ÉP¡Ù∅£¬ÇóʵÊýaµÄȡֵ·¶Î§
£¨3£©ÒÑÖªn¡ÊN*£¬ÇÒSn=
f(x)dx£¬ÊÇ·ñ´æÔڵȲîÊýÁÐ{an}ºÍÊ×ÏîΪf£¨1£©¹«±È´óÓÚ0µÄµÈ±ÈÊýÁÐ{bn}£¬Ê¹µÃSn=An+Bn£¨ÆäÖÐAn£¬Bn·Ö±ðÊÇÊýÁÐ{an}£¬{bn}µÄǰnÏîºÍ£©£¿Èô´æÔÚ£¬ÇëÇó³öÊýÁÐ{an}£¬{bn}µÄͨÏʽ£®Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®
£¨1£©Çóf£¨x£©µÄ×îСֵ£»
£¨2£©Éè²»µÈʽf£¨x£©£¾axµÄ½â¼¯ÎªP£¬ÈôM={x|
| 1 |
| 2 |
£¨3£©ÒÑÖªn¡ÊN*£¬ÇÒSn=
| ¡Ò | n 0 |
¿¼µã£ºµ¼ÊýÔÚ×î´óÖµ¡¢×îСֵÎÊÌâÖеÄÓ¦ÓÃ,¶¨»ý·Ö,ÊýÁеÄÇóºÍ
רÌ⣺µ¼ÊýµÄ×ÛºÏÓ¦ÓÃ
·ÖÎö£º£¨1£©Çó³öÔº¯ÊýµÄµ¼º¯Êý£¬½âµÃµ¼º¯ÊýµÄÁãµã£¬Óɺ¯ÊýÁãµã¶Ô¶¨ÒåÓò·Ö¶Î£¬ÀûÓú¯ÊýÔÚ¸÷Çø¼ä¶ÎÄڵķûºÅÅжÏÔº¯ÊýµÄµ¥µ÷ÐÔ´Ó¶øÇóµÃº¯ÊýµÄ¼«Ð¡Öµ£¬Ò²¾ÍÊÇ×îСֵ£»
£¨2£©ÓÉM¡ÉP¡Ù∅£¬¿ÉÖª²»µÈʽf£¨x£©£¾axÔÚÇø¼ä[
£¬2]ÉÏÓн⣮´úÈëf£¨x£©µÄ½âÎöʽºóת»¯Îªa£¼
-1ÔÚÇø¼ä[
£¬2]ÉÏÓн⣬¹¹Ô캯Êýg£¨x£©=
-1£¬x¡Ê[
£¬2]£®Óɵ¼ÊýÇóÆä×î´óÖµ£¬ÔòʵÊýaµÄȡֵ·¶Î§¿ÉÇó£»
£¨3£©Éè´æÔÚ¹«²îΪdµÄµÈ²îÊýÁÐ{an}ºÍÊ×ÏîΪf£¨1£©¡¢¹«±Èq£¾0µÄµÈ±ÈÊýÁÐ{bn}£¬Ê¹µÃSn=An+Bn£¬Óɶ¨»ý·ÖÇóµÃSn£¬ÔÙÓÉSn=An+Bn£¬·Ö±ðÈ¡n=1£¬2£¬3Çó³öµÈ²îÊýÁеĹ«²îºÍµÈ±ÈÊýÁеĹ«±È£¬µÃµ½µÈ²îÊýÁк͵ȱÈÊýÁеÄͨÏʽ£¬ÑéÖ¤ºóµÃ´ð°¸£®
£¨2£©ÓÉM¡ÉP¡Ù∅£¬¿ÉÖª²»µÈʽf£¨x£©£¾axÔÚÇø¼ä[
| 1 |
| 2 |
| ex |
| x |
| 1 |
| 2 |
| ex |
| x |
| 1 |
| 2 |
£¨3£©Éè´æÔÚ¹«²îΪdµÄµÈ²îÊýÁÐ{an}ºÍÊ×ÏîΪf£¨1£©¡¢¹«±Èq£¾0µÄµÈ±ÈÊýÁÐ{bn}£¬Ê¹µÃSn=An+Bn£¬Óɶ¨»ý·ÖÇóµÃSn£¬ÔÙÓÉSn=An+Bn£¬·Ö±ðÈ¡n=1£¬2£¬3Çó³öµÈ²îÊýÁеĹ«²îºÍµÈ±ÈÊýÁеĹ«±È£¬µÃµ½µÈ²îÊýÁк͵ȱÈÊýÁеÄͨÏʽ£¬ÑéÖ¤ºóµÃ´ð°¸£®
½â´ð£º
½â£º£¨1£©º¯Êýf£¨x£©=ex-x£¬Ôòf¡ä£¨x£©=ex-1£¬
ÓÉf¡ä£¨x£©=0£¬µÃx=0£®
µ±x£¾0ʱ£¬f¡ä£¨x£©£¾0£¬
µ±x£¼0ʱ£¬f¡ä£¨x£©£¼0£¬
¡àf£¨x£©ÔÚ£¨-¡Þ£¬0£©Éϵݼõ£¬ÔÚ£¨0£¬+¡Þ£©ÉϵÝÔö£®
¡àf£¨x£©min=f£¨0£©=1£»
£¨2£©¡ßM={x|
¡Üx¡Ü2}£¬ÇÒM¡ÉP¡Ù∅£¬
¡à²»µÈʽf£¨x£©£¾axÔÚÇø¼ä[
£¬2]ÉÏÓн⣮
ÓÉf£¨x£©£¾ax£¬µÃex-x£¾ax£¬
¼´a£¼
-1ÔÚÇø¼ä[
£¬2]ÉÏÓн⣮
Áîg£¨x£©=
-1£¬x¡Ê[
£¬2]£®
¡ßg¡ä(x)=
£¬
¡àµ±x¡Ê(
£¬1)ʱ£¬g¡ä£¨x£©£¼0£¬g£¨x£©µ¥µ÷µÝ¼õ£»
µ±x¡Ê£¨1£¬2£©Ê±£¬g¡ä£¨x£©£¾0£¬g£¨x£©µ¥µ÷µÝÔö£®
ÓÖg(
)=2
-1£¬g(2)=
-1£¬ÇÒg£¨2£©£¾g£¨
£©£¬
¡àg(x)max=g(2)=
-1£®
¡àa£¼
-1£»
£¨3£©Éè´æÔÚ¹«²îΪdµÄµÈ²îÊýÁÐ{an}ºÍÊ×ÏîΪf£¨1£©¡¢¹«±Èq£¾0µÄµÈ±ÈÊýÁÐ{bn}£¬Ê¹µÃSn=An+Bn£¬
¡ßSn=
f(x)dx=
(ex-x)dx=(ex-
x2+c
=en-
n2-1£®
b1=f£¨1£©=e-1£¬
ÓÉa1+b1=S1£¬¼´a1+e-1=e-
£¬µÃa1=-
£®
ÓÉn¡Ý2ʱ£¬an+bn=Sn-Sn-1=en-1(e-1)-n+
£®
·Ö±ðÈ¡n=2£¬3µÃ£º-
+d+(e-1)q=e(e-1)-
¢Ù
-
+2d+(e-1)q2=e2(e-1)-
¢Ú
¢Ú-¢Ù¡Á2µÃ£¬q2-2q=e2-2e£¬½âµÃ£ºq=e»òq=2-e£¨Éᣩ£®
¹Êq=e£¬d=-1£®
´Ëʱan=-
+(n-1)(-1)=
-n£»
bn=(e-1)•en-1£¬ÇÒan+bn=(e-1)en-1+
-n£¬Âú×ãSn=An+Bn£®
¡à´æÔÚÂú×ãÌõ¼þµÄÊýÁÐ{an}£¬{bn}ʹµÃSn=An+Bn£®
ÓÉf¡ä£¨x£©=0£¬µÃx=0£®
µ±x£¾0ʱ£¬f¡ä£¨x£©£¾0£¬
µ±x£¼0ʱ£¬f¡ä£¨x£©£¼0£¬
¡àf£¨x£©ÔÚ£¨-¡Þ£¬0£©Éϵݼõ£¬ÔÚ£¨0£¬+¡Þ£©ÉϵÝÔö£®
¡àf£¨x£©min=f£¨0£©=1£»
£¨2£©¡ßM={x|
| 1 |
| 2 |
¡à²»µÈʽf£¨x£©£¾axÔÚÇø¼ä[
| 1 |
| 2 |
ÓÉf£¨x£©£¾ax£¬µÃex-x£¾ax£¬
¼´a£¼
| ex |
| x |
| 1 |
| 2 |
Áîg£¨x£©=
| ex |
| x |
| 1 |
| 2 |
¡ßg¡ä(x)=
| (x-1)ex |
| x2 |
¡àµ±x¡Ê(
| 1 |
| 2 |
µ±x¡Ê£¨1£¬2£©Ê±£¬g¡ä£¨x£©£¾0£¬g£¨x£©µ¥µ÷µÝÔö£®
ÓÖg(
| 1 |
| 2 |
| e |
| e2 |
| 2 |
| 1 |
| 2 |
¡àg(x)max=g(2)=
| e2 |
| 2 |
¡àa£¼
| e2 |
| 2 |
£¨3£©Éè´æÔÚ¹«²îΪdµÄµÈ²îÊýÁÐ{an}ºÍÊ×ÏîΪf£¨1£©¡¢¹«±Èq£¾0µÄµÈ±ÈÊýÁÐ{bn}£¬Ê¹µÃSn=An+Bn£¬
¡ßSn=
| ¡Ò | n 0 |
| ¡Ò | n 0 |
| 1 |
| 2 |
| )| | n 0 |
| 1 |
| 2 |
b1=f£¨1£©=e-1£¬
ÓÉa1+b1=S1£¬¼´a1+e-1=e-
| 3 |
| 2 |
| 1 |
| 2 |
ÓÉn¡Ý2ʱ£¬an+bn=Sn-Sn-1=en-1(e-1)-n+
| 1 |
| 2 |
·Ö±ðÈ¡n=2£¬3µÃ£º-
| 1 |
| 2 |
| 3 |
| 2 |
-
| 1 |
| 2 |
| 5 |
| 2 |
¢Ú-¢Ù¡Á2µÃ£¬q2-2q=e2-2e£¬½âµÃ£ºq=e»òq=2-e£¨Éᣩ£®
¹Êq=e£¬d=-1£®
´Ëʱan=-
| 1 |
| 2 |
| 1 |
| 2 |
bn=(e-1)•en-1£¬ÇÒan+bn=(e-1)en-1+
| 1 |
| 2 |
¡à´æÔÚÂú×ãÌõ¼þµÄÊýÁÐ{an}£¬{bn}ʹµÃSn=An+Bn£®
µãÆÀ£º±¾Ì⿼²éÀûÓõ¼ÊýÑо¿º¯ÊýµÄ×îÖµ£¬¿¼²éÁËÊýѧת»¯Ë¼Ïë·½·¨£¬¶ÔÓÚ£¨2£©µÄÇó½â£¬°Ña£¼
-1ÔÚÇø¼ä[
£¬2]ÉÏÓнâת»¯ÎªaСÓÚº¯Êýg£¨x£©=
-1£¬x¡Ê[
£¬2]µÄ×îСֵÊǹؼü£®ÑµÁ·ÁËÊýÁÐͨÏʽµÄÇ󷨣¬Êô×ÛºÏÐÔ½ÏÇ¿µÄÌâÄ¿£®
| ex |
| x |
| 1 |
| 2 |
| ex |
| x |
| 1 |
| 2 |
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿