题目内容
已知函数f(x)=5sinxcosx-5
cos2x+
.
(Ⅰ)求f(x)的最小正周期;
(Ⅱ)求f(x)的单调递增区间,并求出f(x)在[
,
]上的最大值与最小值.
| 3 |
5
| ||
| 2 |
(Ⅰ)求f(x)的最小正周期;
(Ⅱ)求f(x)的单调递增区间,并求出f(x)在[
| π |
| 3 |
| 5π |
| 6 |
考点:复合三角函数的单调性,二倍角的正弦
专题:三角函数的求值
分析:(Ⅰ)由三角函数公式化简可得f(x)=5sin(2x-
),易得最小正周期;
(Ⅱ)由-
+2kπ≤2x-
≤
+2kπ解不等式可得f(x)的递增区间,由
≤x≤
,可得
≤2x-
≤
,进而求三角函数可得最值.
| π |
| 3 |
(Ⅱ)由-
| π |
| 2 |
| π |
| 3 |
| π |
| 2 |
| π |
| 3 |
| 5π |
| 6 |
| π |
| 3 |
| π |
| 3 |
| 4π |
| 3 |
解答:
解:(Ⅰ)化简可得f(x)=5sinxcosx-5
cos2x+
=
sin2x-5
+
=
sin2x-5
cos2x=5(sin2xcos
-cos2xsin
)=5sin(2x-
)
∴最小正周期T=
=π
(Ⅱ)由-
+2kπ≤2x-
≤
+2kπ得-
+kπ≤x≤
+kπ(k∈Z),
∴f(x)的递增区间是[-
+kπ,
+kπ](k∈Z),
∵
≤x≤
,∴
≤2x-
≤
,
∴f(x)min=-
,f(x)max=5.
| 3 |
5
| ||
| 2 |
=
| 5 |
| 2 |
| 3 |
| 1+cos2x |
| 2 |
5
| ||
| 2 |
| 5 |
| 2 |
| 3 |
| π |
| 3 |
| π |
| 3 |
| π |
| 3 |
∴最小正周期T=
| 2π |
| 2 |
(Ⅱ)由-
| π |
| 2 |
| π |
| 3 |
| π |
| 2 |
| π |
| 12 |
| 5π |
| 12 |
∴f(x)的递增区间是[-
| π |
| 12 |
| 5π |
| 12 |
∵
| π |
| 3 |
| 5π |
| 6 |
| π |
| 3 |
| π |
| 3 |
| 4π |
| 3 |
∴f(x)min=-
5
| ||
| 2 |
点评:本题考查三角函数的周期性和单调性以及最值,属基础题.
练习册系列答案
相关题目
设x,y∈R,向量
=(x,1,0),
=(1,y,0),
=(2,-4,0)且
⊥
,
∥
,则|
+
|=( )
| a |
| b |
| c |
| a |
| c |
| b |
| c |
| a |
| b |
A、
| ||
B、
| ||
C、2
| ||
| D、10 |